This report satisfies the provisions of Title 10, United States Code, Section 139. The report summarizes the operational test and evaluation activities (including live fire testing activities) of the Department of Defense during the preceding fiscal year.

J. Michael Gilmore
Director
Introduction

I have served as the Director, Operational Test and Evaluation at the request of the President and Congress since September 2009. It has been an honor and a privilege to serve in this position for over seven years. During my confirmation, I pledged to assure that all of the Department’s acquisition systems under my oversight undergo rigorous operational and live fire test and evaluation to determine whether they are operationally effective, suitable, and survivable. I also pledged to provide meaningful, credible test results on system performance to the Congress and civilian and military leaders so that they could make informed decisions regarding acquisition and employment of those systems. In my final annual report to Congress, I review the accomplishments of this office over my tenure, the challenges that the T&E community continues to face, and the consequences of repeatedly fielding equipment that cannot be counted on in combat – a trend that will continue unless rigorous independent operational testing is conducted early and adequately on all systems.

At the core of my pledge to ensure rigorous testing and credible results has been the use of scientific and statistical approaches to realistic operational test design and analysis starting at the beginning of a system’s development. The test community has made enormous progress in increasing the use of scientific test design, increasing statistical rigor and improving the analytical capabilities of the Department of Defense (DOD) workforce. The National Research Council recommended the use of modern statistical techniques in defense test and evaluation in 1998, but these techniques were not fully embraced by the operational test community until I provided the direction and implementation guidance early in my tenure. The use of statistical test and analysis techniques is now standard procedure at all of the Operational Test Agencies (OTAs) and is similarly supported by the DOD’s developmental test and evaluation office.

Implementation of rigorous test design and analysis provides defensible, factual information to support critical roles of this office. The topics below illustrate how my office has implemented rigorous test design, independent oversight, and objective analysis to support the DOD acquisition system:

• Data to support rapid fielding
• Opportunities for early problem discovery
• Rationales for not conducting testing
• Meaningful, testable requirements and test measures
• Rationales for test adequacy
• Efficient test plans that cover the operational envelope
• Characterization of performance across the operational envelope
• Optimum use of scarce resources
• Improved understanding of system usability
• Methodologies for cybersecurity testing and analysis
• Design for reliability
• Methodologies for combining data from multiple tests
• Rigorous validation of models and simulations
• Improved test resources for evolving threats

The remainder of this introduction summarizes some of the most critical impacts of this office over my tenure. Examples illustrate the value of our products to our primary customer, the soldiers, airmen, sailors, and marines who must ultimately use these systems to accomplish their missions.
Introduction

The primary goal of operational testing is to understand how new and upgraded systems will perform under the stresses of realistic combat conditions, prior to the Full-Rate Production decision and fielding to combat units. Understanding the capabilities and limitations of systems before they are used in combat is important to commanders in the field and to the men and women who protect our country. Furthermore, the identification of problems permits corrective action before large quantities of a system are procured and minimizes expensive retrofitting of system modifications. Even for systems in which a few units (e.g., ships, satellites) will be acquired, operational testing is essential to find and fix problems, which often can only be found in operationally realistic test conditions, and characterize system performance across operational conditions before the warfighter has to use it in combat.

Rapid Fielding

One of my first priorities as Director was to support rapid fielding of new capabilities to meet urgent needs on the battlefields in Iraq and Afghanistan. My office relied on the use of all available data to provide information regarding performance of these systems. Since 2009, we have published more than 20 early fielding reports to Congress on critical combat systems such as countermeasures for helicopters, small form fit radios, air-to-ground munitions, and many naval systems including ship self-defense missiles, torpedo warning systems, and both variants of the Littoral Combat Ship (LCS). These reports identified performance problems that were either fixed before deployment or made known to the combatant commanders and joint forces that depended on them.

Early Problem Discovery

My office has advocated for earlier realistic testing and problem discovery so that acquisition decision makers can make timely decisions. The Undersecretary of Defense for Acquisition, Technology and Logistics’ (USD(AT&L)) 2016 report on the defense acquisition system described $58 Billion in sunk costs over the last two decades on programs that were ultimately canceled. While this figure includes 22 major programs such as the Army’s Future Combat System and Comanche Helicopter, it does not include other major programs developed outside the primary acquisition system such as the Airborne Laser and Air Force transformational satellites. To help avoid expensive programs continuing in development while not delivering military utility, my office now requires operational assessments (OAs) for all programs be conducted prior to the Milestone C production decision, when problem discoveries may highlight significant mission shortfalls and problems are cheaper to fix.

Early testing (both developmental test events and OAs) should inform the development process and enable the early identification of major problems. More than just providing an early opportunity for problem detection, an OA provides a chance to build knowledge on how the system will perform once placed in an operational environment. The use of Design of Experiments (DOE), even in early testing, allows efficient test designs that cover the operational envelope. Knowledge gained from OAs can help refine the resources necessary for the IOT&E, such as the most significant factors affecting operational performance, potentially reducing the scope for the IOT&E. In ideal cases, the use of sequential test design from early testing including OAs through IOT&E can provide even more efficient use of test budgets by combining information across test phases. While my office has successfully integrated information from OAs and IOT&E, integrated developmental and operational testing is the exception and not the rule. One challenge in particular is having production-representative articles early enough to do realistic testing.
Conduct Operational Test Only when Systems are Ready

Having a clear understanding of the required testing provides a rationale for making decisions on when operational tests will or will not provide value to the community. While my office has been a strong supporter of OAs prior to Milestone C, operational testing should only be conducted when appropriate. In cases where systems are clearly not ready for rigorous, realistic testing, we have recommended against spending scarce resources to observe poor performance. Instead, DOT&E has advocated that those resources be reallocated to address capability shortfalls. In the case of the Remote Multi-Mission Vehicle (RMMV), my office recommended that the Navy cancel a planned OA because of well-documented reliability problems. We instead recommended that the Navy dedicate the resources allocated for the OA towards making improvements to the Increment 1 mine countermeasures (MCM) mission package. (See details in reliability section.)

My office also recommended the cancelation of the Army Integrated Air and Missile Defense (AIAMD) Limited User Test (LUT) in favor of a developmental test because of well-known problems with an immature system that was falling well short of performance requirements to demonstrate readiness for a Milestone C production decision. The LUT proceeded against our recommendation, but evaluated less than one-third of the effectiveness measures because of system immaturity and the lack of readiness of some AIAMD capabilities. As DOT&E predicted, the LUT was adequate to confirm poor effectiveness, poor suitability, and poor survivability. My office recommended that the Army fix all critical deficiencies and conduct another LUT to demonstrate the full range of capabilities identified in the May 2012 Test and Evaluation Master Plan (TEMP) under operationally realistic and system stressing conditions.

Early Problem Discovery:
CVN 78 USS Gerald R. Ford

CVN 78 is the lead ship in the Navy's newest class of aircraft carriers. USS Gerald R. Ford is scheduled to be delivered in 2017. The design incorporates several new systems including a new nuclear power plant, weapons elevators, radar, catapult, and arresting gear.

In the last two CVN 78 OAs, DOT&E examined the reliability of new systems onboard CVN 78 and noted that the poor or unknown reliability of the Electromagnetic Aircraft Launch System (EMALS), the Advanced Arresting Gear (AAG), the Dual Band Radar (DBR), and the Advanced Weapons Elevators (AWE) is the program’s most significant risk to successful use in combat. These systems affect major areas of flight operations – launching aircraft, recovering aircraft, air traffic control, and ordnance movement. DOT&E noted that unless these reliability problems are resolved, which would likely require redesigning AAG and EMALS, they will significantly limit CVN 78’s ability to conduct combat operations.

CVN 78 is intended to support high-intensity flight operations. The CVN 78 Design Reference Mission (DRM) specifies a 35-day wartime scenario. The DRM includes a 4-day surge with round-the-clock flight operations and 270 aircraft sorties per day. The DRM also includes 26 days of sustained operations with flight operations over a nominal 12 hours per day and 160 aircraft sorties per day.

Based on AAG reliability to recover aircraft, CVN 78 is unlikely to support high-intensity flight operations. AAG has a negligible probability (<0.0001 percent) of completing the 4-day surge and less than a 0.2 percent chance of completing a day of sustained operations without an operational mission failure.

EMALS has higher reliability than AAG, but its reliability to launch aircraft also is likely to limit flight operations. EMALS has less than a 7 percent chance of completing the 4-day surge and a 67 percent chance of completing a single day of sustained operations without a critical failure.

DBR’s unknown reliability for air traffic control and ship self-defense is a risk to the IOT&E and for combat operations. The Program Office does not have a DBR reliability estimate based on test data. Because CVN 78 will be delivered soon and DBR hardware is already installed in the ship, it will be difficult to address any significant reliability issues should they arise.

Canceling the F-35 Joint Strike Fighter (JSF) Block 2B Operational Utility Evaluation

When asked in 2012 whether the Services supported the need for the Block 2B Operational Utility Evaluation (OUE), both the Air Force and the Navy stated that they would consider using the F-35 Block 2B aircraft in combat and hence required the testing planned for the Block 2B OUE.

In March 2014, I recommended not conducting the planned F-35 Block 2B OUE, scheduled for the summer of 2015 to evaluate the “initial warfighting capabilities” of the F-35A and F-35B aircraft. My recommendation was based on observations that the program was behind schedule in completing the Block 2B development, and the OUE would only delay the necessary progression to Block 3F development, which is needed to complete development and begin IOT&E. I predicted that the results of the OUE would confirm what we already knew – that the Block 2B F-35 would be of limited military utility. Also, there was substantial evidence that the aircraft would not be ready to support training of operational pilots and successful completion of a comprehensive operational evaluation. The USD(AT&L) and the JSF Program Executive Officer agreed with my recommendation, and the JSF Operational Test Team refocused their efforts from conducting the OUE to activities that would help the program progress toward completing Block 2B, and eventually Block 3F development.
Meaningful, Testable Requirements and Test Measures

My office has continually engaged with the requirements community in efforts to improve requirements and in doing so helped numerous programs refine their requirements early in the acquisition cycle, thereby saving time and resources from trying to achieve the unobtainable. We have pointed out unrealistic reliability requirements in programs like ground combat vehicles, tactical datalinks, and long-range air defense radars; these programs were able to establish the rationale for lower thresholds for providing desired mission performance.

The initial reliability requirement for the Joint Light Tactical Vehicle (JLTV) of 4,500 Mean Miles Between Operational Mission Failure (MMBOMF) was much larger than comparable systems such as the High Mobility Multi-purpose Wheeled Vehicle (HMMWV), and would have been very difficult to achieve. Based on feedback from my office and other stakeholders on what reliability is practically achievable and necessary to support mission objectives, user representatives reduced the requirement to 2,400 MMBOMF. This requirement has a clear, mission-based rationale and is verifiable within a reasonable operational test period.

Early engagement also helps programs write requirements in such a manner that they are testable within a reasonable timeframe. We have encouraged the use of continuous metrics such as time, distance, and accuracy in place of binomial metrics such as probability of hit or probability of kill in order to reduce the testing required to confidently demonstrate compliance with requirements. Additionally, even in cases where requirements are not updated, the Service OTAs have now made it common practice to use continuous metrics to scope the operational test in addition to evaluating the required hit/kill-type requirements.

We continue to observe, that while necessary, Key Performance Parameters (KPPs) are not sufficient for testing military systems. KPPs often lack the context of the complex operational environment, including current threats. A few examples:

- **P-8A Poseidon** is a maritime patrol aircraft that will replace the P-3C Orion and conduct anti-submarine warfare (ASW) and other missions. However, the KPPs required only that the P-8A be reliable, be equipped with self-protection features and radios, and carry a requisite number of sonobuoys and torpedoes, but not actually demonstrate an ability to find and prosecute submarines. DOT&E, working with the Navy’s OTA, focused the testing on examining quantitative mission-oriented measures, beyond the limited KPPs, in order to characterize the aircraft’s ASW capabilities.

- **Virginia-class submarine** is a multi-mission nuclear attack submarine that is replacing the existing Los Angeles-class submarine. During the IOT&E, the submarine failed to meet two KPP thresholds. However, Virginia’s performance was equivalent to or better than the legacy Los Angeles-class in all mission areas, leading my office to evaluate the Virginia as operationally effective and operationally suitable.

- **Early Infantry Brigade Combat Team (EIBCT) systems** were a collection of sensors the Army planned to use in infantry brigades to detect and provide warning of enemy activities. The KPPs for some of the sensors specified only that the systems produce images recognizable as human faces at specified distances—not an expected detection range or a probability of detection. DOT&E advocated and the Army agreed that the systems be tested under realistic combat conditions against a capable enemy threat, which revealed that enemy soldiers could easily spot the large antennas needed to transmit the images back to the operations centers. Additionally, many of the sensors were not useful to soldiers even though they met the KPPs. As a result, the Army canceled the portions of the program that were unnecessary.

As these examples clearly illustrate, operational context is necessary to fully evaluate systems, whether they meet their KPPs or not. My office continues to work with requirements organizations to ensure requirements are achievable, testable, and operationally meaningful, but some independent evaluation metrics will always be necessary, especially in the case of evolving threats.

Writing Measurable Requirements:
Air and Missile Defense Radar (AMDR)

The Navy’s new SPY-6 Air and Missile Defense Radar (AMDR) is intended to provide an improved Integrated Air and Missile Defense (IAMD) capability to the next flight of USS Arleigh Burke (DDG 51) class destroyers (i.e. DDG 51 Flight III). In 2012, DOT&E reviewed the Navy’s draft Capability Development Document for AMDR. DOT&E’s review noted that several of the program’s requirements, including its IAMD Key Performance Parameter (KPP), were probabilistic in nature and would require an unachievable amount of operational testing. Verifying the IAMD KPP, for example, would have required hundreds of ballistic missile and anti-ship cruise missile surrogates. To improve the testability of the AMDR KPPs, DOT&E provided the Navy with alternative metrics using continuous variables like time and range for assessing the radar’s capability. The Navy ultimately adopted metrics similar to those suggested by DOT&E, reducing required testing while maintaining the desired capability.
Defensible Rationales for Test Adequacy
Throughout my tenure I have emphasized that the statistical approaches of Design of Experiments (DOE) provide a defensible and efficient methodology for not only determining test adequacy but also ensuring that we obtain the maximum value from scarce test resources. DOE has proven to elicit maximum information from constrained resources, provided the ability to combine information across multiple independent test events, and produced defensible rationale for test adequacy and quantification of risk as a function of test size.

One clear advantage of statistical approaches to evaluating test adequacy is that they provide a means to quantify how much information can be derived from each test point. Clearly, the first time a projectile is fired at a helmet and does not penetrate we learn something new. The second, third, and fourth times, we learn about the robustness of that helmet and whether the first result was a fluke or a consistent trend. But if we fire 10 projectiles at 10 helmets, what is the value of firing the 11th projectile? As the test progresses, we are incrementally not learning as much as the first shot. Statistical methods provide a quantitative trade-space for identifying that point of diminishing returns and also the associated risks of making incorrect decisions based on limited test sizes. My office and the Service OTAs have found these methods invaluable when debating the cost/benefit of additional test points.

Efficient Test Plans that Cover the Operational Envelope
A critical aspect of operational testing is identifying how system capabilities are challenged when placed in operationally realistic conditions. However, today’s modern systems are not only designed to contribute to multiple mission areas, but also work across a wide range of operational conditions. The constantly evolving threat further complicates the challenge of determining not only how much testing is enough, but also the conditions under which we need to test. My office has successfully used DOE to address how much testing is needed and also to select points that efficiently span the operational space to ensure that we have a complete picture of performance.

Statistically Rigorous Test Protocols: Enhanced Combat Helmet (ECH)
It is critical that we ensure that the protective equipment we provide to our soldiers meets the high quality that is demanded. After I was asked to assume oversight of personnel protective equipment, I directed that testing of these systems follow protocols that were comparable to existing statistically-based industry quality control methodologies. Employing a statistical approach allowed the Department to set quantifiable quality standards.

Those standards proved valuable following an engineering change proposal intended to increase manufacturing capacity for the ECH. The ECH failed the small arms component of the DOT&E-approved protocol. The helmet failed because of too many small arms penetrations, which demonstrated that the helmet did not provide the desired protection. The manufacturer ultimately decided it was necessary to use different ballistic shell laminate material to provide for an acceptable helmet against the small arms threat.

Designing an Efficient Test for a Multi-Mission Strike Fighter
The F-35 is a multi-role fighter aircraft being produced in three variants for the Air Force, Marine Corps, and Navy. The multi-dimensional operational space created by the mission types, aircraft variants, ground and air threats, and weapons loads is very complex, yet suited for the use of experimental design to efficiently ensure adequate coverage of the operational space for characterizing the performance of the F-35 in all mission areas. Additionally, experimental design enables a “matched pairs” construct for doing comparison testing between the F-35 and the legacy aircraft it is replacing.

The overarching test approach for the F-35 Block 3F DOT&E was to create detailed test designs for evaluating each of the core mission areas by defining appropriate, measurable response variables corresponding to operational effectiveness of each mission area. The test team divided the operational space – using DOE concepts – into factors that would affect the response variables, e.g., type of ground threat or number and types of red air threat, and varied those factors to ensure coverage of the operational space in which the F-35 may be used in combat. Also, the test team sought to maximize information collection by dividing the threat continuum into categories and then assigning coverage to the appropriate mission areas. The team also ensured that key capabilities would be assessed in at least one mission area. For example, finding, tracking, and engaging moving ground targets are enabled by the ground moving target indicator (GMTI) and ground moving target track (GMTT) functions of the radar, and are only covered in strike coordination and reconnaissance and close air support (CAS) missions. This allowed the test team to assess GMTI and GMTT capability without including moving ground targets in all of the mission areas.

The application of DOE to the test design process also supports the development of objective comparison tests. One of the purposes of operational testing is to provide realistic and objective assessments of how systems improve mission accomplishment compared to previous systems under realistic combat conditions. The F-35 requirements document states that the F-35 will replace legacy aircraft, including the A-10, in the CAS mission, so the test design includes a comparison test of the F-35A and the A-10 in this role.
Optimum Use of Scarce Resources
DOE and corresponding statistical analysis methods have supported extracting the maximum value from scarce test resources in a defensible manner. In cases where testing is expensive and there is pressure to reduce test sizes, DOE allows us to understand up front what information we are giving up. Additionally, these methods can assist in finding holes in our current knowledge and placing test points so that they provide the greatest information gain.

Improved Understanding of System Usability
A key aspect of operational testing is observing the quality of human-systems interactions and their impact on mission accomplishment. Operators are a critical component of military systems. Hardware and software alone cannot accomplish missions. Systems that are too complex for operators to use compromise mission success by inducing system failures and accomplishment. Operators are a critical component of military systems. Hardware and software alone cannot accomplish missions. Systems that are too complex for operators to use compromise mission success by inducing system failures and

KC-130J Harvest Hercules Airborne Weapon Kit (HAWK)
The Navy is updating the Harvest HAWK that allows the KC-130J tanker/mobility aircraft to employ HELLFIRE and Griffin laser-guided missiles for close air support. Under an Urgent Operational Need Statement, Harvest HAWK has been deployed in theater since 2010 without a formal operational test. The updated Harvest HAWK includes a new sensor for targeting weapons and for laser designation and a new mission operator station. The Navy proposed a limited operational test with only a few end-to-end demonstrations of live munitions. My office proposed a more robust test design based on current tactics documents and munition capabilities. The Navy rejected that proposal, claiming that the system was adequately proven in combat and only limited testing was needed. The Navy provided the available combat data and our analysis showed that while the munitions generally perform well, there are significant gaps between where the system has been used in combat and the desired capabilities of the updated system. The combat data provided significant information on performance during the day, at one altitude, and against stationary targets. Very little information was available on different altitudes, at night, and against moving targets. The Navy is now working with my office to update the operational test design to collect the data that are necessary to fill those gaps.

Long Range Anti-Ship Missile (LRASM)
My office received a request from the Navy to reduce the number of free-flight test shots for the LRASM quick reaction assessment because of budget limitations. The Navy proposed reducing the number of weapons from the previously agreed upon 12 missiles to 6. The proposed reduction excluded important aspects of the operational engagements that looked at different target ranges and aspect angles, which I believe could affect the success rate and performance of the missile.

I was also concerned with having limited live testing to validate the modeling and simulation (M&S) tool. As it stands, the planned 12-shot free-flight program, provides limited opportunity to validate the M&S. Executing any less would not provide adequate information to detect differences between free-flight testing and the M&S. As a direct result, we would run the risk of mischaracterizing the performance of the weapon across the operational test space.

Through statistical analysis techniques, I determined the 12 missiles provided a minimally adequate test for assessing weapon performance and validating the M&S integral to this quick reaction capability. Therefore, I would not approve a test strategy with less than this minimum.

The Navy accepted this analysis and my decision.

Warfighter Information Network – Tactical (WIN-T) Usability Concerns
WIN-T is an Army communications system using both satellite and terrestrial datalinks. It allows soldiers to exchange information in tactical situations.

The initial testing of WIN-T focused on its technical performance. Testing revealed not only poor technical performance, but also problems with the complexity of the system. Even when the software and hardware were properly functioning, soldiers found the system difficult to operate. Usability has been a key concern as WIN-T has since been upgraded over the years.

Subsequent testing focused on improvements to the man/machine interface that soldiers use to operate the system on the battlefield. As depicted above, the original interface was complex and difficult to read. The interface had multiple sub-menus and when the system failed, it could take 40 minutes to an hour to restart it. The new interface is far simpler.

Testers used surveys to evaluate the difficulties that soldiers had when using the system. The Army initially constructed surveys that were complex, with nested questions and “Not Applicable” as a potential response. DOT&E encouraged the test and evaluation community to incorporate survey science into the testing, and worked with the Army to improve the surveys. The revised surveys are simpler, more meaningful, more likely to be completed reliably, and easier to interpret. Well-designed surveys allow operational evaluations to rigorously incorporate the soldiers’ experience and are crucial for DOT&E evaluations and reporting to Congress.
to critically evaluate the usability of military systems as well as the workload, fatigue, and frustration that operators experience while employing the system. Surveys are often the only means to evaluate these issues; proper scientific survey design must be done to ensure that the data collected to evaluate the quality of human-system interactions are valid and reliable.

Methodologies for Cybersecurity Testing and Analysis

Improving our understanding of the cyber threat, including recognizing that cybersecurity applies to more than automated information systems, and improving the rigor of cyber testing rigor have been two of my office’s more notable achievements. Most military systems, networks, and missions are susceptible to degradation as a result of cyber-attacks. DOT&E evaluates the cybersecurity posture of units equipped with systems and live DOD networks during operational testing and Combatant Command and Service exercises. Important efforts include our continued emphasis on identifying how cybersecurity affects operational missions, inclusion of cyber defenses in tests, improvement of Red Team skills, and analytical methodologies and measures. We have also advocated for overarching cyber assessments that focused on identifying cross-cutting problems for the Department to address. In 2014, I published comprehensive guidance to the OTAs, updating and reinforcing guidance we have been using since Congress directed DOT&E perform annual evaluations of Combatant Command and Service cybersecurity postures in 2002. The DOD acquisition process should deliver systems that provide secure and resilient cyber capabilities; therefore, operational testing must examine system performance in the presence of realistic cyber threats. My 2014 guidance specifies that operational testing should include a cooperative vulnerability and penetration assessment phase to identify system vulnerabilities followed by an adversarial assessment phase to exploit vulnerabilities and assess mission effects. My guidance encourages program managers to address cybersecurity vulnerabilities that are discovered during the cooperative vulnerability and penetration assessment, prior to conducting the adversarial assessment. Despite this, adversarial assessments often find exploitable mission-critical vulnerabilities that earlier technical testing could have mitigated.

My office continues to emphasize the need to assess the effects of a debilitating cyber-attack on the users of DOD systems so that we understand the impact to a unit’s mission success. A demonstration of these mission effects is often not practicable during operational testing due to operational safety or security reasons. I have therefore advocated that tests use simulations, closed environments, cyber ranges, or other validated and operationally representative tools to demonstrate the mission effects resulting from realistic cyber-attacks. Representative cyber environments hosted at cyber ranges and labs provide one means to accomplish the above goals. Such cyber ranges and labs provide realistic network environments representative of warfighter systems, network defenses, and operators, and they can emulate adversary targets and offensive/defensive capabilities without concern for harmful effects to actual in-service systems/networks. For several years, I have proposed enhancements to existing facilities to create the DOD Enterprise Cyber Range Environment (DECRE), which is comprised of the National Cyber Range (NCR); the DOD Cybersecurity Range; the Joint Information Operations Range; and the Joint Staff J-6 Command, Control, Communications, and Computers Assessments Division. The need and use of these resources is beginning to outpace the existing DECRE capabilities. As an example, the NCR experienced a substantial increase in customers the last few years.

Cybersecurity continues to evolve rapidly as both new threats and new defensive capabilities emerge and are fielded. Our ability to test and evaluate the DOD’s cyber posture must keep pace with these advancements by accelerating development of appropriate tools and techniques. For example, Programmable Logic Controllers (PLCs) are ubiquitous in both fixed installations and deployable platforms, such as ships and aircraft. DOT&E has provided guidance on the necessity for caution in testing these components due to risk of platform damage caused by a PLC that is compromised, and has invested in the development of safe test and evaluation techniques for PLCs. Test agencies must continue to use all available tools and resources to assess PLCs and other industrial control systems used in DOD platforms. Other cybersecurity test challenges include:

- Systems with non-Internet Protocol data transmission (e.g., Military Standard 1553 data bus)
- Multiple Spectrum Cyber Threats (e.g., via non-computer based networks)
- Customized attacks
- End-to-end testing to include key subsystems, peripherals, and plug-ins
- Cloud computing

The Services’ OTAs have established a cybersecurity technical exchange forum to discuss ongoing challenges and share solutions and lessons learned to improve overall cybersecurity operational test process. There were two meetings this year, which also included DOT&E participation. These interchanges are a good step forward for the operational test community to keep pace with the threat.
Design for Reliability

I similarly made improvement of system reliability a top priority—through initial design and early testing rather than discovering shortfalls at the end of development in operational testing. In my office’s evaluation of oversight programs, we continue to see rising compliance with the policies set forth in the DODI 5000.02 and DOT&E guidance memos. The use of reliability growth curves as a tool to monitor progress of a system’s reliability is now standard practice. The most successful programs are incorporating reliability growth into their contracts and have reliability thresholds as KPPs.

However, change takes time and, despite the Department’s continued efforts to emphasize the importance of reliability, defense systems continue to demonstrate poor reliability in operational testing. Only 11 of 26 systems (42 percent) that had a post-Milestone C operational test in FY16 met their reliability requirements. The remaining 15 systems either failed to meet their requirements (15 percent), met their requirements on some (but not all) parts of the overall system of systems (15 percent), or could not be assessed because of limited test data or the absence of a reliability requirement (27 percent).

Analysis of these recent operational tests indicates that one of the challenges in demonstrating whether a system meets its reliability requirement in operational testing is planning a long enough test. While tests are generally not scoped with respect to the reliability requirement, sufficient data should be captured throughout all testing phases to determine the reliability of the system as it compares to the requirements. The operational test scope for many systems is not long enough to demonstrate reliability requirements with statistical confidence. Over the past 3 years, 13 percent of requirements have planned test lengths shorter than the requirement itself. For systems with high reliability requirements, it is particularly important to intelligently use test data from all available sources. When system reliability is poor, even a short test might be adequate to prove the system did not meet its reliability requirement.

Methodologies for Combining Data from Multiple Tests

While rigorous operational testing is paramount to this office’s assessment of operational effectiveness, suitability, and survivability, it is not always possible or practical to obtain all of the information required for our assessments in an operational test. My office has supported the use of all information in operational evaluations in order to provide the best assessments available and use test resources in the most responsible fashion. In recent guidance updates, we have provided a pathway for using developmental test data in operational evaluations. We have enthusiastically advocated for considering all of the information available in reliability assessments.

Rigorous Validation of Modeling and Simulation (M&S)

Another focus area we are just beginning to influence is the rigorous validation of M&S that are to be used in the evaluation of a system’s combat effectiveness and suitability. I expect the validation of M&S to include the same rigorous statistical and analytical principles that have become standard practice when designing live tests. All M&S, when used to support

Elements of a Successful Reliability Growth Program: Joint Light Tactical Vehicle (JLTV)

The JLTV is a partial replacement for the High Mobility Multi-purpose Wheeled Vehicle (HMMWV) fleet. The JLTV program presented a unique opportunity to understand the factors that contribute to a successful reliability outcome because three vendors competed during the Engineering and Manufacturing Development Phase. Each vendor implemented a reliability growth program and conducted extensive testing, but only one of the vendors met the program’s reliability goals. Comparing the performance of the three vendors indicates that programs should:

- Review and approve failure definition scoring criteria early to improve vendors’ understanding of government priorities.
- Encourage vendors to base initial reliability predictions on operationally representative test data, to include the system, test conditions, and approved failure scoring procedures.
- Allow adequate time and funding to grow system reliability.
- Address failure modes at all severity levels; non-aborting failures may degrade the system and cause system aborts. Addressing these failures early also reduces the maintenance and logistics burden and improves system availability. Ensure there will be enough testing to support a comparative evaluation of vendor reliability outcomes for competitive programs.
The Remote Minehunting System (RMS) uses the RMMV, which is an unmanned, diesel-powered, semi-submersible vehicle, to tow a minehunting sonar (the AN/AQS-20 variable depth sensor).

From 2005 to 2009, the system exhibited reliability problems in nearly all periods of developmental and operational testing, twice failing to complete a planned IOT&E because of poor reliability, and ultimately experienced a Nunn-McCurdy breach. Following a Nunn-McCurdy review in 2010, USD(AT&L) directed the Navy to restructure the RMS program and fund and implement a three-phase RMMV reliability growth program.

Following combined developmental and integrated testing in 2013 (after the Navy concluded its reliability growth program), DOT&E assessed RMMV (v4.2) reliability as 31.3 hours Mean Time Between Operational Mission Failure (MTBOMF), less than half the Navy’s requirement of 75 hours MTBOMF; further, DOT&E’s statistical analysis of all test results indicated that reliability had not actually improved. Navy officials asserted that RMMV (v4.2) had demonstrated remarkable reliability improvements, testifying to Congress in 2013 that testing had shown reliability “substantially exceeding requirements” and in 2014 that the system “continues to test well.” Throughout 2014, DOT&E detailed its analyses of RMMV v4.2 reliability in multiple memoranda to USD(AT&L) refuting the Navy’s unsubstantiated claims that it had achieved reliability requirements and demonstrated readiness to restart low-rate initial production.

The Navy subsequently upgraded the RMMV v4.2 to make it compatible with the Littoral Combat Ship’s (LCS) communications and launch, handling, and recovery systems and commenced ship-based testing of the so-called RMMV v6.0. This version of the system continued to experience reliability problems. In an August 2015 memorandum, DOT&E advised USD(AT&L) that the reliability of the RMS and its RMMV v6.0 was so poor that it posed a significant risk to the planned operational test of the Independence-variant LCS and the Increment 1 mine countermeasures (MCM) mission package and to the Navy’s plan to field and sustain a viable LCS-based minehunting and mine clearance capability prior to FY20. Test data continued to refute the Navy’s assertion that vehicle reliability had improved and statistical measures employed by DOT&E showed “no confidence or statistical evidence of growth in reliability over time” between RMMV v4.0, v4.2, and v6.0.

In October 2015, the Navy delayed operational testing of the Independence-variant LCS equipped with the first increment of the MCM mission package pending the outcome of an independent program review, including an evaluation of potential alternatives to the RMS. The Navy chartered the review in response to an August 21, 2015, letter from Senators John McCain and Jack Reed, Chairman and Ranking Member of the Senate Committee on Armed Forces expressing concerns about the readiness to enter operational testing given the significant reliability problems observed during testing in 2015. In early 2016, following the completion of the independent review, among other actions, the Navy canceled the RMS program, halted further RMMV procurement, abandoned plans to conduct operational testing of individual MCM mission package increments, and delayed the start of LCS MCM mission package IOT&E until at least FY20. After canceling the RMS program, the Navy also announced its intention to evaluate alternatives to the RMS.

Ironically, the Navy’s mine warfare resource sponsor identified a multi-function unmanned surface vessel (USV) as a “game changer” and potential RMMV replacement in 2012. In the years that followed, however, Navy officials touted RMMV reliability improvements that never materialized, reported inflated reliability estimates based on incorrect analysis, and funded additional RMMV development. The Navy did not use robust statistical analysis to assess RMMV performance objectively nor did it prioritize development of a multi-function USV capable of integrating with the RMS’s towed sonar. These choices have left the Navy without a viable means of towing improved sonars when the contractor delivers initial production units next year and could delay realistic testing and fielding of the system until FY20. By accepting objective analysis of RMMV performance and committing to the USV sooner, the Navy could have avoided this unfortunate position and saved millions in RMMV development costs.

Despite DOT&E’s reporting, USD(AT&L) published in its annual Developmental Test and Evaluation (DT&E) reports in March 2015 and March 2016 that RMMV v6.0 “improves vehicle performance and reliability;” and that RMMV v4.2 “demonstrated sufficient reliability growth to satisfy Nunn-McCurdy requirements,” citing a debunked, inflated reliability estimate of 75.3 hours MTBOMF. Such assurances from USD(AT&L) and the Navy misled their audience as to the seriousness of the problems the RMS program faced in delivering a necessary capability to the warfighter.
operational tests and evaluations, should not be accredited until a rigorous comparison of live data to the model’s predictions is done. Testers should focus on the validation of the full system or environment being emulated.

Scientific Test and Analysis Techniques Center of Excellence

The Deputy Assistant Secretary of Defense for Developmental Test & Evaluation (DASD DT&E) / Director, Test Resource Management Center (TRMC) and my office continue to work collaboratively to advance the use of scientific approaches to test and evaluation. In 2011, DASD DT&E signed the Scientific Test and Analysis Techniques (STAT) Implementation Plan, which endorses these methods and created the STAT Center of Excellence (COE). The STAT COE provides program managers with the scientific and statistical expertise to plan efficient tests that ensure that programs obtain valuable information from the test program. Since 2012 when the STAT COE was formed, I have noted that programs who engage with the STAT COE early have better structured test programs that will provide valuable information. The STAT COE has provided these programs with direct access to experts in test science methods, which would otherwise have been unavailable. However, the COE’s success has been hampered by unclear funding commitments. The COE must have the ability to provide independent assessments to programs (independent of the program office). Furthermore, the COE needs additional funding to aid program managers in smaller acquisition programs. Smaller programs with limited budgets do not have access to strong statistical help in their test programs and cannot afford to hire a full-time PhD-level statistician to aid their developmental test program; having access to these capabilities in the STAT COE on an as-needed basis is one means to enable these programs to plan and execute more statistically robust developmental tests. Finally, the STAT COE has also developed excellent best practices and case studies for the T&E community.

Enterprise Strategy – Testing Naval Air Defense

In 1996, the Navy defined the self-defense capability against anti-ship cruise missiles (ASCMs) that all new ship classes were required to have. This probabilistic self-defense requirement is known as the probability of raid annihilation (PRA) requirement. The PRA requirement states that a ship must defeat a raid of ASCMs, arriving within a short time window, such that no ASCMs hit the ship, and specifies with what probability of success this must be achieved. With assistance from DOT&E, the Navy developed a strategy for assessing this requirement with end-to-end testing of integrated combat systems for all new ship classes (e.g., USS San Antonio class, USS America class, USS Zumwalt class.). The combat systems on U.S. Navy ships are composed of many systems, which are developed by separate program offices. Before this new “enterprise” strategy, no one program office was responsible for developing the overall test program. One goal of the strategy was to consolidate all testing requirements from all sources, developmental or operational testing, for individual systems or for the overall ship, and truly create an integrated test program.

Among other things, this new enterprise strategy intended to address testing the ship-class PRA requirement and to provide for a more efficient use of test resources for conducting anti-air warfare ship self-defense testing. By addressing multiple ship class and combat system element requirements in an integrated test strategy, the Navy was able to reduce the total amount of testing required. Before using the enterprise strategy, each ship class and individual system would develop its own test program. With the enterprise strategy, a test program for the family of combat systems is developed. This allows testing to focus on the overall end-to-end mission of ship self-defense and eliminates duplicative testing. As an example, USS San Antonio and USS America are both amphibious ships that operate in similar environments against similar threats. The equipment on the San Antonio is a subset of the equipment on the America.

This enterprise strategy was successfully applied to the USS San Antonio class. For the USS America class, the enterprise approach permitted testing to focus on the added components (SPS-49 radar and Evolved SeaSparrow Missile (ESSM) integration) and on incremental upgrades to the other systems. As with the USS San Antonio assessment, the USS America assessment is satisfying the ship’s PRA requirements, requirements for the Block 2 Rolling Airframe Missile (RAM Blk 2), and for the Mark 2 Ship Self-Defense System (SSDS MK 2). Prior to the enterprise strategy, the Navy pursued individual test programs for each system that would have required many tests, each very similar in nature, be executed. Before adopting the enterprise approach, the Navy estimated they would spend $1.1 Billion on ship self-defense testing against cruise missiles between FY05 and FY15. The enterprise strategy reduced those costs by $240 Million and continues to provide a means to optimize the use of scarce and expensive resources.

Additionally savings related to the enterprise strategy are the results of a common modeling and simulation (M&S) paradigm for assessing the PRA requirement and some other combat system requirements. In the case of RAM Blk 2 and USS America, both programs needed end-to-end representations of the ship’s combat system to test requirements. In this example, the M&S suite developed to assess the ship’s PRA requirement is also being used to assess the missile probability of kill requirement. By using the same M&S paradigm, the live testing needed to support the verification, validation, and accreditation is also reduced. A similar approach will be applied to the next flight of the USS America class (i.e., LHA 8) and its combat system elements (SSDS MK 2, the Block 2 ESSM, and the Enterprise Air Surveillance Radar) and to other new ship programs (e.g., USS Arleigh Burke Flight III) and their combat system elements (e.g., SPY-6 Air and Missile Defense Radar).
Science of Test Research Consortium
As we work to apply more rigorous approaches to the test and evaluation of defense systems, challenges inevitably arise that demand new approaches. In collaboration with TRMC since 2011, my office continues to fund the Science of Test Research Consortium. The consortium pulls together experts in experimental design, statistical analyses, reliability, and M&S from Naval Post Graduate School, the Air Force Institute of Technology, and six additional universities. The Science of Test Research Consortium supports both the development of new techniques as well as a link between academia and the T&E community and a pipeline of graduates who could enter the T&E workforce. As advances occur in statistics, the research consortium keeps the T&E community aware of those changes. Additionally, they are working to focus research efforts on the unique challenges of operational test and evaluation that require new statistical methods. The consortium is essential for ensuring we remain well-informed of new techniques and improvements to existing techniques.

Science of Test Workshop
This past year my office, in collaboration with NASA and the Institute for Defense Analyses, supported the inaugural Test Science Workshop, which was designed to build a community around statistical approaches to test and evaluation in defense and aerospace. The workshop brought together practitioners, analysts, technical leadership, and statistical academics for a 3-day exchange of information, with opportunities to attend world-renowned short courses, share common challenges, and learn new skill sets from a variety of tutorials.

The Workshop promoted the exchange of ideas between practitioners in the T&E community with academic experts in the research consortium. Over 200 analysts from across the federal government and military Services benefited from training sessions, technical sessions, and case studies showcasing best practices. The feedback from participants was overwhelmingly positive, reinforcing that the event was much needed in the DOD and NASA analytical communities. The high response rate and enthusiastic comments indicated a clear desire to attend such events in the future.

Workforce
Rigorous and operationally realistic testing requires a skilled workforce capable of understanding the systems under test and applying scientific, statistical and analytical techniques to evaluate those systems. It is critical that personnel in the Operational Test Agencies (OTAs) have strong scientific and analytical backgrounds. In 2012, DOT&E conducted a workforce study and recommended that each OTA (1) increase the number of civilian employees with scientific, technology, engineering, and mathematics (STEM) backgrounds, (2) acquire at least one subject matter expert with an advanced degree in statistics, operations research, or systems engineering, and (3) continue to recruit military officers with operational, fleet experience.

Currently, the OTA workforce consists of roughly half civilian (51 percent) and half military (49 percent) personnel. While the overall size of the workforce has declined since 2006, the proportion of civilian personnel with advanced degrees has grown by 136 percent. The number of civilian personnel with master’s and doctoral degrees increased by 45 percent and 91 percent, respectively. Currently, 2 percent of civilian personnel hold doctoral degrees, 35 percent hold master’s degrees, 36 percent hold bachelor’s degrees, and 27 percent do not possess a college degree. These trends are similar for each OTA and indicate that overall, OTA civilian personnel are more educated today than they were a decade ago.

Only 56 percent of civilian personnel in the OTA workforce currently hold a degree in a STEM field. However, this number includes all OTA civilian personnel, including those who do not directly engage in operational testing, such as administrators and security personnel. The proportion of civilian personnel with a degree in a STEM field increases to 72 percent when
these individuals are excluded, closely mirroring the proportion reported in 2012 (75 percent). Since 2012 all OTAs have acquired at least one expert with a background in statistics, operations research, or systems engineering.

The OTAs are making steady progress toward achieving the recommendations that DOT&E outlined in the 2012. The two most notable improvements since 2012 are they have all acquired expertise in statistics, operations research, or systems engineering and overall there has been an increase in the number of personnel with master’s degrees.

All of the OTAs have also made significant investments in improving their capabilities for implementing rigorous statistical methods. They have updated their internal guidance and procedures to reflect DOT&E guidance. Additionally, they have all invested in training on experimental design and survey design enabling the existing workforce to better use these methods in developing and analyzing operational tests.

As military systems grow in complexity and capability, however, the need for personnel with advanced analytical capabilities, who understand scientific test design and statistics techniques, will become increasingly important and OTA hiring processes will need to continue to emphasize STEM fields.

VALUE OF INDEPENDENCE

In 1983, Congress directed OSD to create the DOT&E office, and the Director was given specific authorities in title 10 U.S. Code. The Congressional concerns that led to the establishment of this office were many, but included: poor performance of weapon systems, inaccurate reports from the Services, shortcuts in testing because of budget pressure, and a lack of realistic combat conditions and threats in testing. The unique independence of this office, free from conflicts of interest or pressure from Service senior leadership allows us to:

- Illuminate problems to DOD and Congressional Leadership to inform their decisions before production or deployment
- Tell the unvarnished truth
- Ensure operational tests are adequately designed and executed

As Director, OT&E, I do not make acquisition decisions but inform those who make them about weapon system performance under combat conditions. My staff is composed of over one-third active duty military officers from all Services in addition to civilians with advanced engineering and science degrees. Our mission is to inform acquisition officials about how weapons will work in combat, including live fire survivability and lethality, before the systems are deployed.

The independence of this office allows us to require adequate and realistic operational testing and to advocate for resources to improve our T&E capabilities. I have observed that some of the most important capabilities or tests that we have prescribed have been met with substantial resistance from the Services, sometimes requiring adjudication by the Deputy Secretary of Defense; I describe the most important of these decisions below (the T&E Resources section of this report provides details of FY16 focus areas). In light of the remarkable resistance from the Services to prioritize adequate testing and test assets in their acquisition programs, it is even more apparent that the independence of this office is critical to the success of finding problems before systems are used in combat.

Improved Test Resources for Electronic Warfare

An alarming trend I have seen during my tenure is that our threats are increasing their capabilities faster than our test infrastructure. Through the yearly budget review process, I have advocated for resources to improve test range infrastructure to support rigorous testing of modern combat systems. Most notably, in 2012, I convinced the Department to invest nearly $500 Million in the Electronic Warfare Infrastructure Improvement Program (EWIIP) to upgrade open-air test ranges, anechoic chambers, and reprogramming laboratories in order to understand performance of the F-35 Joint Strike Fighter (JSF) and other advanced air platforms against near-peer threat integrated air defense systems. The open-air test and training ranges owned and operated by both the Air Force and Navy are lacking advanced threat systems that are being used in combat by our adversaries today, are proliferating, or are undergoing significant upgrades; yet both Services strongly resisted incorporating these modern threats that we proposed until directed to do so by the Deputy Secretary.
Moreover, an important part of the JSF mission systems is the mission data file, which contains the settings that the JSF sensors use to identify signals detected from the threat’s integrated air defense systems. The United States Reprogramming Laboratory (USRL) is responsible for building the mission data file. The USRL is also a recipient of resources DOT&E argued for with the EWIIP program. Unfortunately, even though funding for upgrades was provided in 2014, preventable but now insurmountable delays configuring the USRL will delay its ability to support JSF combat capabilities until at least mid-2018.

In 2016, my office again requested funding for infrastructure to support testing and training of additional advanced air warfare systems such as the Next Generation Jammer. This funding is intended to enable the test ranges and the models and simulations (that must be validated with test data) to assess the performance of U.S. systems against the key challenges of near peer threat air defense networks of the 2020s.

Fifth-Generation Aerial Target (5GAT)
In 2006, DOT&E sponsored a study on the design of a dedicated Fifth Generation threat aircraft to adequately represent characteristics of threat aircraft being deployed by our adversaries. Since then, DOT&E and TRMC have invested over $11 Million to mature the government-owned design. The Department provided funding to complete the final design, tooling, fabrication, and flight tests. The prototyping effort will provide cost-informed alternative design and manufacturing approaches for future aerial target acquisition programs. These data can also be used to assist with future weapon system development decisions as well as T&E planning and investment, and will support future T&E analysis of alternative activities.

Self-Defense Test Ship
In 2013, the Navy sadly re-learned in the accident aboard the USS Chancellorsville (CG 62) where a target drone impacted the ship, that the only safe way to test the complex close-in self-defense capabilities of a ship is to mount those capabilities on a remotely controlled, unmanned self-defense test ship (SDTS). And this was not the first time such an accident occurred. In 1983, a sailor was killed onboard USS Antrim (FFG 20) during a test. The safety risks associated with testing short-range, self-defense systems are significant and increasing with the increasing capabilities of modern anti-ship cruise missiles. Hence, it is necessary to have test assets such as the unmanned SDTS to conduct such testing.

The SDTS has been integral in the past in testing weapons systems and ship classes. Without it, significant limitations in the Navy’s ability to defend surface combatants would not be understood. Furthermore, efforts to overcome these limitations could not be tested. Unfortunately, the Navy has been reluctant to extend the same investment to developing an SDTS equipped with an Aegis Combat System, Air and Missile Defense Radar (AMDR), and Enhanced SeaSparrow Missile (ESSM) Block 2 for adequate operational testing of the DDG 51 Flight III destroyer self-defense capabilities. The current SDTS lacks the appropriate sensors and other combat system elements to test these capabilities.

In 2014, the Navy published a study that claimed an Aegis-equipped SDTS was not necessary for operational testing; however, DOT&E refuted these claims, which use flawed justifications. There is no short cut. Safety considerations preclude testing against realistic threats onboard manned ships. It has been demonstrated on numerous occasions that data from less stressing manned ship testing, where targets must be fired at large crossing angles and turned away from the ship at significant ranges, cannot be extrapolated to stressing, realistic threat encounters. Modeling and simulation (M&S) cannot replace live testing because without the SDTS there are no data to ensure that the M&S accurately portray live results.

In December 2014, the Deputy Secretary of Defense commissioned a study by the Director of Cost Assessment and Program Evaluation (CAPE) to provide options to deliver an at-sea test platform adequate for self-defense operational testing of the DDG 51 Flight III, the AMDR, and the ESSM Block 2 programs. CAPE provided three affordable alternatives and the Deputy Secretary directed the Navy to procure long-lead items to begin procurement of an Aegis-equipped SDTS. The Deputy Secretary further directed the Navy to work with DOT&E to develop an integrated test strategy for the DDG 51 Flight III, AMDR, Aegis Modernization, and ESSM Block 2 programs, and to document that strategy in a draft Test and Evaluation Master Plan (TEMP) to be submitted by July 2016.

Despite the clear need for an Aegis-equipped SDTS and the unambiguous direction of the Deputy Secretary, the Navy has, as of the signing of this report, not yet provided an integrated test strategy for these crucial programs; and although the Navy provided funding for the long-lead AMDR components, the Navy did not program funding in the Future Years Defense Plan to complete all other activities (including procuring Aegis Combat System equipment and targets) necessary to modify the SDTS and support adequate operational testing of the DDG 51 Flight III’s self-defense capabilities in FY23 as planned. In November 2016, the Deputy Secretary again directed the Navy to fully fund those activities.

Full Ship Shock Trial (FSST) for CVN 78 and DDG 1000
In hostile areas, ships commonly face the threat of underwater shocks created by non-contact detonations of torpedoes, mines, or near miss air delivered weapons. These threats do not require precise targeting or the ship to sink because the shock from
a nearby miss can defeat critical mission capabilities by knocking motors and generators off-line and breaking equipment not adequately shock-mounted. Consequently, DOT&E requires shock trials for ships to test them for survivability against these widely prevalent threat types. The shock trial subjects combat-equipped ships to as operationally realistic an underwater shock load as possible while avoiding potential for crew injury and catastrophic damage. These trials are required before the first deployment of any ship class to allow for design improvements to the ship to make it more survivable in combat. Identifying these problems early in the construction of the class allows design changes to be more economically incorporated into follow-on ships. The early execution is especially critical, as each shock trial results in hundreds of findings of shock deficiencies that require correction and would not appear in M&S.

Unfortunately, the Navy, despite admitting in its technical warrants that “shock trials do have value and a return on investment,” recommended in 2013 that the ship acquisition program forgo the use of shock trials as part of LFT&E or to meet Navy shock-hardening requirements. The Navy further attempted to delay shock trials on CVN 78 and DDG 1000 to later ships in the class, citing program schedule, cost, or operational availability above any scientific rationale. If the shock trial is delayed to later ships, it will occur after many years of operational deployment, exposing these ships to unnecessary risk from undiscovered and uncorrected vulnerabilities. After the Senate Armed Services Committee Chairman and Ranking Member expressed concern with this plan and urged restoration of the shock trial to the lead ship in the CVN 78 class, the Deputy Secretary directed the Navy to conduct shock trials on CVN 78 prior to first deployment, and on DDG 1000 or 1001 prior to the deployment of any ship of that class.

Warrior Injury Assessment Mannequin (WIAMan)

Commercial automotive crash test dummies were designed to assess injuries from the forces most commonly seen in civilian car accidents – sharp accelerations parallel to the ground as the car is rapidly (over milliseconds) pushed from the back, front, or side. In 2009, and repeatedly since, evaluations of combat injury data and the Department’s underbody blast M&S capabilities have revealed these dummies, used only out of necessity, are wholly inadequate for predicting injuries in the direction that military vehicles and their occupants were being pushed in the field – upwards and over orders of magnitude shorter time frames resulting in completely different shock impacts. The fundamentally different nature of this impact and its effects on warfighters in vehicles exposed to an under-vehicle Improvised Explosive Device (IED), required initiating a new effort to increase DOD’s previously poor understanding of the cause and nature of injuries incurred in underbody blast events, and as well as designing a military-specific anthropomorphic test device (ATD) to use in live fire test events replicating IED events.

The Department’s shortcomings in this domain were a cause for concern for the Secretary of Defense in 2010. The DOT&E vulnerability assessment of the Mine Resistant Ambush Protected (MRAP) family of vehicles revealed that combat injuries, and not test data, proved that some MRAP variants provided significantly less protection than others. Upon receiving this news, Secretary Gates directed a review of the Department’s underbody blast M&S capability gaps, and the top three gaps were all related to the ability to predict injuries to vehicle occupants after under-vehicle explosions. The subsequent directive to address these gaps came from senior OSD leadership, and, with initial funding from DOT&E, the Army began this project known as the Warrior Injury Assessment Manikin (WIAMan.)

Unfortunately, Army leadership continues to question the need for this capability, which threatens the successful execution of the WIAMan project, even though these threats are likely to persist into the future. The Army requirements community recognizes this threat, as demonstrated by the fact that all of their current and future ground platforms have some form of underbody protection requirement. Despite these survivability requirements for future ground combat vehicles, Army leadership continues to renew resistance to almost every aspect of the WIAMan project, from its requirements to its cost, and some claim, despite overwhelming evidence to the contrary, that the Department’s current injury assessment capability is good enough. The Army Research Laboratory did not agree that the Department’s current capability was adequate, and created the WIAMan Engineering Office (WEO) in 2012 to oversee the scientific research and ATD development to advance the state of the science. The WEO has led 5 years of successful research on injury assessment criteria by a consortium of university and government laboratories and the production of a prototype mannequin. Subsequently, in 2015 the Army decided that WIAMan should become an Acquisition Category II acquisition program of record similar to a combat weapon system with a formal program manager, but the Army did not provide any additional funding to establish this acquisition program office. All of the bureaucratic minutiae associated with a establishing a major program of record to build 40 articles costing less than $1 Million each has had a significantly negative impact on cost and schedule, with no demonstrable benefits. The personnel and resources required to stand up a program office whose only function is to support contracting is a questionable use of funding on a resource-constrained program. The Army should remove the WIAMan project from its acquisition system (thereby eliminating unnecessary bureaucratic overhead) and allow the WEO to develop a build-to-print prototype concept ATD; once its performance has been assessed as adequate by the WEO, the Army should solicit bids from industry to build the new ATD. A separate (unfunded) program office should not be required for this approach. As
the project is currently unfunded in its entirety past FY18, DOT&E remains concerned that the Army does not intend to ultimately complete this project.

The development and fielding of the WIAMan ATD will bring the Department on par with the civilian automotive world in its ability to accurately assess injuries from traumatic events. Despite the 2011 OSD and Army approval of a well-documented project scope driven by combat injuries, Army leadership is now requiring yet another round of justification on the injuries selected for inclusion in the WIAMan ATD, and Army acquisition leadership is expressing unease with incorporating these ATDs into live fire testing up to, and including, the Advanced Multi-Purpose Vehicle. In the view of DOT&E, it is entirely appropriate for the DOD, and in particular for the Army, to accord the same high priority to testing and verifying the protection provided to soldiers by their combat vehicles that the commercial automotive industry accords to testing and verifying the protection provided to the U.S. public by their automobiles.

MYTHS ABOUT OPERATIONAL TESTING

Over the course of more than 25 years in public service, I have found it lamentable that the acquisition bureaucracy in the DOD routinely promulgates unfortunate falsehoods. I have seen and heard many inaccurate claims of what DOT&E does and does not do, and inaccurate claims about system performance that are subsequently recanted or proven wrong by this office. These falsehoods can have deleterious impacts on programs. When a program manager makes false assertions regarding the impact of operational testing on programs, there is always a risk that people in leadership positions, who have little detailed knowledge of the program, will nonetheless believe the program manager and unwisely attempt to curtail operational testing—despite the fact that operational testing requires a small fraction of the overall program’s cost and schedule and all too frequently identifies significant problems with performance for the first time.

Constrained defense budgets have existed throughout my tenure, which has resulted in questions about the value of operational testing. It has also been asserted that testing is a major cause of delays in defense programs and adds uncontrolled costs. A primary purpose of operational testing, and a key value of such testing, is to identify critical problems that can be seen only when systems are examined under the stresses of realistic combat conditions, prior to the Full-Rate Production decision and fielding to combat units. This identification permits corrective action to be taken before large quantities of a system are procured and avoids expensive retrofit of system modifications. The assertion that testing causes delays misses the essential point: fixing the deficiencies causes delays, not the testing. Furthermore, taking the time to correct serious performance problems is exactly what we desire in a properly-functioning acquisition system. We are not engaged in bureaucratic game play here; testing is not a game to be won. What we do is very serious. And yes, we need to highlight the performance problems that need to be fixed so that they can be fixed.

In response to the cost of operational testing, it is relevant to consider these costs relative to the acquisition costs of the systems themselves. Numerous studies have identified that the marginal cost of operational testing is small, in general less than 1 percent of a program’s overall acquisition cost. This small relative cost stands in stark contrast with the potential savings from problems identified that can be corrected before full-rate production and the likely result that the system will work when called upon in combat.

While there has been concern over the cost of operational testing throughout my tenure, I have had the opportunity to observe firsthand how necessary an independent, objective operational test is to our acquisition system. Independent, operational testing not only provides objective information for
the Congress and Defense leadership, but also provides critical information to programs on improving systems so warfighters are properly equipped.

Programs clearly have an incentive to denounce testing as unfair when it reveals performance problems. Cost and schedule overruns, especially those that are the direct result of poor program management, reflect poorly on program managers and program executive officers. However, by engaging in bureaucratic games, rationalizing problems, and minimizing testing, the result is a great disservice for the people for whom we work – men and women in combat whose lives depend on the systems we field to them. There’s a terrible fear that exists that a negative DOT&E report will kill a program; however, it is much more likely that performance problems reported by DOT&E lead to a greater allocation of resources and time to fix them.

Bureaucratic process is no substitute for thought and common sense. Programs often complain that DOT&E requires testing beyond threshold requirements, or even threshold KPPs. As I discussed earlier, if programs were tested solely to their KPPs, we often would not be able to evaluate whether systems can accomplish their primary missions. While we must always pay attention to requirements documents, we also have to interact with the operators. We have to pay attention to the concepts of operation, to the war plans, to the intelligence information on the latest threats, and all of those things will tell us how to do an operational test under the circumstances the system will actually be used in combat and enable us to characterize the performance of systems across their operational envelope – not just at one key parameter. For example, I have heard program managers claim there are no requirements for cybersecurity, and therefore cybersecurity should not be tested. This is an extreme example of not using common sense but hiding behind ambiguous language in DOD directives.

Exaggerated Costs of Testing

DOT&E approved a TEMP in 2012 for a program with multiple software releases planned. Separate OT&E periods were planned for selected releases depending on the capabilities introduced. Operational testing was not required for versions without meaningful mission capability enhancements. In 2014, the Service restructured this program and approved critical KPP capabilities to be delivered with one of the versions that was not originally planned to have operational testing – the Service changes were a result of development of previous releases taking much longer than predicted. Successive rounds of developmental testing revealed repeated instability and inadequate performance. After the restructure, DOT&E required the Program Office to update their TEMP to reflect the new reality. In response, the program reported to USD(AT&L) that operational test requirements would add 3 months and $9 Million additional cost and schedule. This was contrary to the Service's Operational Test Agency (OTA) estimate that the testing would take approximately 30 days and cost approximately $300,000. The delays identified by the program manager were the result of unrealistic assumptions about development and integration time periods – not because of operational testing.

Inaccurate Claims Regarding Cybersecurity Test and Evaluation

Earlier this year, the USD(AT&L) requested Program Executive Officers (PEOs) provide him assessments of the challenges they confront in their jobs; these assessments were published in the Defense Acquisition University (DAU) online magazine without critical factual review. One PEO wrote that cyber testing and the ability to achieve a survivable rating from DOT&E was nearly impossible, adding that test criteria are not well defined.

The PEO went on to say that threat portrayal exceeds the capabilities of a Blue Force Team (i.e., nation-state threat going against a brigade-level formation) and focuses on insider threats of unreasonable proportions. It was especially unfortunate for this to be published widely without comment because it could inevitably undermine the efforts the operational test community has taken to find and fix the significant cybersecurity issues present in most of our acquisition programs.

While the Joint Staff is making progress formalizing cybersecurity within the survivability KPP, Secretary Carter clearly stated his common-sense requirement that all the Department’s weapon systems must undergo cybersecurity assessments. And consistent with DOT&E’s statutory authority, we have published specific procedures and metrics to be used to conduct cybersecurity test and evaluation for over a decade.

We have routinely seen that DOD Red Teams need to use only novice skills to successfully attack our systems. Nonetheless, the intelligence community states that virtually all major defense acquisition programs will face advanced, nation-state cyber threats. Our assessments report results for both types of threats separately.

The intelligence community also consistently describes insider threats as the primary cybersecurity threat to acquisition programs. Bradley Manning and Edward Snowden are two insiders we know; we clearly do not know about all potential insider threats. Hence it would be grossly irresponsible for OT&E to not assess insider threats, which are obviously real.
As a community we have made immense progress in the past seven years. The need for rigorous and defensible approaches to test and evaluation is not going away. As our systems become even more complex, and autonomous, continuous and integrated testing will be necessary. We will need to continue to evolve our application of state-of-the-art methodologies to confront these new challenges. We will continue to need to update range resources.

Over the past seven years, we have put the framework in place, establishing the research consortium, science of test workshop in partnership with NASA, developing guidance including the TEMP Guidebook and others. However, this office as well as the Service test organizations, need to keep moving the trajectory forward so that we continue to provide valuable information to decision makers.

The operational test community should continue to provide independent, fact-based information to senior leaders and decision makers. The Service operational test organizations, like my office, are organized to be independent from the acquisition leadership. This is so that the facts, the unvarnished truth, can be reported to senior leadership without undue influence. However, in order for real change to take place in the acquisition system and to minimize future acquisition failures, leadership must actually make itself aware of the information provided by independent assessments of systems, critically question all the information they have, and use it to make sound decisions. I have provided numerous examples in this introduction where plenty of facts about systems are available; I have provided numerous methods and techniques to obtain the facts in an effective and efficient manner depending on the program involved. But unless leaders in the department display the intellectual curiosity to create a demand signal for accurate information about their programs, and the moral courage to act faithfully on that information once it’s generated, acquisition reform cannot occur. Only when leaders have the authority and confidence to say “No,” when the facts reveal that a course deviation is essential to a program, change will occur. The willingness and ability to say “No” to high-risk schedules, optimistic cost estimates, and optimistic claims of technical readiness and to support those decisions within and outside the Department using cogent arguments based on the facts are essential. Leadership that does this sends a strong message by directly challenging the powerful incentives that can otherwise lead to the adoption of unachievable requirements embodied in high-risk programs that fail. While there is constant criticism of DOT&E and the Services’ independent activities and pressure to constrain our independence, continued strong support by the Congress and successive Administrations of these pockets of independent and objective expertise and evaluation remains, in my view, essential.

I cannot emphasize enough the need for early, adequate, realistic, and rigorous independent operational testing on all systems to ensure what is being developed will, in fact, provide our Service men and women the capabilities they need in combat. This is especially true during this period of tight budget controls as there are not sufficient resources to correct significant problems once systems are fielded.

I submit this report, as required by law, summarizing the operational and live fire test and evaluation activities of the Department of Defense during fiscal year 2016.

J. Michael Gilmore
Director
FY16 Table of Contents

DOT&E Activity and Oversight

FY16 Activity Summary ... 1
Program Oversight ... 7
Problem Discovery Affecting OT&E .. 13

DOD Programs

Major Automated Information System (MAIS) Best Practices .. 23
Defense Agencies Initiative (DAI) ... 29
Defensive Medical Information Exchange (DMIX) .. 33
Defense Readiness Reporting System – Strategic (DRRS-S) .. 37
Department of Defense (DOD) Teleport .. 41
DOD Healthcare Management System Modernization (DHMSM) ... 43
F-35 Joint Strike Fighter ... 47
Global Command and Control System – Joint (GCCS-J) ... 107
Joint Information Environment (JIE) .. 111
Joint Warning and Reporting Network (JWARN) .. 115
Key Management Infrastructure (KMI) Increment 2 ... 117
Next Generation Diagnostic System (NGDS) Increment 1 ... 121
Public Key Infrastructure (PKI) Increment 2 ... 123
Theater Medical Information Program – Joint (TMIP-J) .. 127

Army Programs

Army Network Modernization ... 131
Network Integration Evaluation (NIE) ... 135
Abrams M1A2 System Enhancement Program (SEP) Main Battle Tank (MBT) 139
AH-64E Apache ... 141
Army Integrated Air & Missile Defense (IAMD) ... 143
Chemical Demilitarization Program – Assembled Chemical Weapons Alternatives (CHEM DEMIL-ACWA) ... 145
Command Web ... 147
Distributed Common Ground System – Army (DCGS-A) .. 149
HELLFIRE Romeo and Longbow ... 151
Javelin Close Combat Missile System – Medium ... 153
Joint Light Tactical Vehicle (JLTV) Family of Vehicles (FoV) .. 155
Joint Tactical Networks (JTN) Joint Enterprise Network Manager (JENM) 157
Logistics Modernization Program (LMP) .. 161
M109A7 Family of Vehicles (FoV) Paladin Integrated Management (PIM) 165
Mid-Tier Networking Vehicular Radio (MNVR) ... 167
Near Real Time Identity Operations (NRTIO) .. 171
Patriot Advanced Capability-3 (PAC-3) ... 173
Soldier Protection System (SPS) .. 177
Spider Increment 1A M7E1 Network Command Munition .. 181
Warfighter Information Network – Tactical (WIN-T) .. 183

Navy Programs

Aegis Modernization Program .. 187
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGM-88E Advanced Anti-Radiation Guided Missile (AARGM) Program</td>
<td>191</td>
</tr>
<tr>
<td>Amphibious Assault Vehicle (AAV) Survivability Upgrade (AAV-SU)</td>
<td>195</td>
</tr>
<tr>
<td>AN/APR-39D(V)2 Radar Signal Detection Set (RSDS)</td>
<td>197</td>
</tr>
<tr>
<td>AN/BLQ-10 Submarine Electronics Warfare Support System</td>
<td>199</td>
</tr>
<tr>
<td>AN/BQQ-10 Acoustic Rapid Commercial Off-the-Shelf Insertion (A-RCI) Sonar</td>
<td>201</td>
</tr>
<tr>
<td>AN/SQQ-89A(V)15 Integrated Undersea Warfare (USW) Combat System Suite</td>
<td>203</td>
</tr>
<tr>
<td>CH-53K - Heavy Lift Replacement Program</td>
<td>205</td>
</tr>
<tr>
<td>Close-in Weapon System (CIWS) – SeaRAM Variant</td>
<td>209</td>
</tr>
<tr>
<td>Common Aviation Command and Control System (CAC2S)</td>
<td>211</td>
</tr>
<tr>
<td>Consolidated Afloat Networks and Enterprise Services (CANES)</td>
<td>215</td>
</tr>
<tr>
<td>Cooperative Engagement Capability (CEC)</td>
<td>217</td>
</tr>
<tr>
<td>CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier</td>
<td>219</td>
</tr>
<tr>
<td>DDG 1000 Zumwalt Class Destroyer</td>
<td>225</td>
</tr>
<tr>
<td>DDG 51 Flight III Destroyer/Air and Missile Defense Radar (AMDR)/Aegis Combat System</td>
<td>229</td>
</tr>
<tr>
<td>Department of the Navy Large Aircraft Infrared Countermeasures (DON LAIRCM)</td>
<td>233</td>
</tr>
<tr>
<td>Distributed Common Ground System – Navy (DCGS-N)</td>
<td>235</td>
</tr>
<tr>
<td>E-2D Advanced Hawkeye</td>
<td>237</td>
</tr>
<tr>
<td>Expeditionary Transfer Dock (T-ESD) and Expeditionary Sea Base (T-ESB)</td>
<td>239</td>
</tr>
<tr>
<td>F/A-18E/F Super Hornet and EA-18G Growler</td>
<td>243</td>
</tr>
<tr>
<td>Infrared Search and Track (IRST)</td>
<td>247</td>
</tr>
<tr>
<td>Integrated Defensive Electronic Countermeasures (IDECM)</td>
<td>249</td>
</tr>
<tr>
<td>Joint Standoff Weapon (JSOW)</td>
<td>251</td>
</tr>
<tr>
<td>LHA 6 New Amphibious Assault Ship (formerly LHA(R))</td>
<td>253</td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS)</td>
<td>257</td>
</tr>
<tr>
<td>MH-60S Multi-Mission Combat Support Helicopter</td>
<td>277</td>
</tr>
<tr>
<td>Mine Resistant Ambush Protected (MRAP) Family of Vehicles (FoV) – Marine Corps</td>
<td>283</td>
</tr>
<tr>
<td>MK 54 Lightweight Torpedo and Its Upgrades Including High Altitude Anti-Submarine</td>
<td>285</td>
</tr>
<tr>
<td>Mobile User Objective System (MUOS)</td>
<td>289</td>
</tr>
<tr>
<td>MQ-4C Triton Unmanned Aircraft System</td>
<td>293</td>
</tr>
<tr>
<td>MQ-8 Fire Scout</td>
<td>295</td>
</tr>
<tr>
<td>MV-22 Osprey</td>
<td>299</td>
</tr>
<tr>
<td>Next Generation Jammer (NGJ) Increment 1</td>
<td>301</td>
</tr>
<tr>
<td>P-8A Poseidon Multi-Mission Maritime Aircraft (MMA)</td>
<td>303</td>
</tr>
<tr>
<td>Remote Minehunting System (RMS)</td>
<td>307</td>
</tr>
<tr>
<td>Rolling Airframe Missile (RAM) Block 2</td>
<td>311</td>
</tr>
<tr>
<td>Ship Self-Defense for LHA(6)</td>
<td>313</td>
</tr>
<tr>
<td>Ship Self-Defense for LSD 41/49</td>
<td>317</td>
</tr>
<tr>
<td>Ship-to-Shore Connector (SSC)</td>
<td>319</td>
</tr>
<tr>
<td>SSN 774 Virginia Class Submarine</td>
<td>321</td>
</tr>
<tr>
<td>Standard Missile-6 (SM-6)</td>
<td>323</td>
</tr>
<tr>
<td>Surface Electronic Warfare Improvement Program (SEWIP) Block 2</td>
<td>327</td>
</tr>
<tr>
<td>Surface Ship Torpedo Defense (SSTD) System: Torpedo Warning System (TWS) and Countermeasure Anti-Torpedo (CAT)</td>
<td>329</td>
</tr>
<tr>
<td>Tactical Tomahawk Missile and Weapon System</td>
<td>333</td>
</tr>
<tr>
<td>VH-92A Presidential Helicopter Replacement Program</td>
<td>335</td>
</tr>
</tbody>
</table>
Air Force Programs

AC-130J Ghostrider ... 337
AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM) 341
Air Force Distributed Common Ground System (AF DCGS) ... 343
Air Operations Center - Weapon System (AOC-WS) ... 345
B-2 Defensive Management System Modernization (DMS-M) .. 349
Battle Control System – Fixed (BCS-F) ... 351
CV-22 Osprey ... 353
Defense Enterprise Accounting and Management System (DEAMS) 355
E-3 Airborne Warning and Control System (AWACS) Block 40/45 359
F-22A Advanced Tactical Fighter ... 363
Family of Advanced Beyond Line-of-Sight Terminals (FAB-T) ... 367
Geosynchronous Space Situational Awareness Program (GSSAP) 369
Global Broadcast Service (GBS) System ... 371
Global Positioning System (GPS) Enterprise ... 375
Joint Space Operations Center (JSpOC) Mission System (JMS) .. 381
KC-46A .. 385
Massive Ordnance Penetrator (MOP) .. 389
Miniature Air Launched Decoy (MALD) and Miniature Air Launched Decoy – Jammer (MALD-J) ... 391
MQ-9 Reaper Armed Unmanned Aircraft System (UAS) ... 393
QF-16 Full-Scale Aerial Target (FSAT) ... 397
RQ-4B Global Hawk High-Altitude Long-Endurance Unmanned Aerial System (UAS) 399
Small Diameter Bomb (SDB) II .. 401
Space-Based Infrared System Program, High Component (SBIRS HIGH) 403

Ballistic Missile Defense Programs

Ballistic Missile Defense System (BMDS) .. 405
Sensors / Command and Control Architecture .. 409
Aegis Ballistic Missile Defense (Aegis BMD) .. 413
Ground-based Midcourse Defense (GMD) .. 419
Terminal High-Altitude Area Defense (THAAD) ... 421

Live Fire Test and Evaluation (LFT&E) ... 425

Cybersecurity ... 439

Test and Evaluation Resources .. 449

Joint Test and Evaluation (JT&E) ... 463

The Center for Countermeasures (CCM) .. 469
FY16 Activity Summary

DOT&E activity for FY16 involved oversight of 316 programs, including 30 Major Automated Information Systems. Oversight activity begins with the early acquisition milestones, continues through approval for full-rate production, and, in some instances, during full production until removed from the DOT&E oversight list.

Our review of test planning activities for FY16 included approval of 37 Test and Evaluation Master Plans (TEMPS), 89 Operational Test Plans, and 1 LFT&E Strategy (not included in a TEMP). DOT&E also rescinded approval for the AGM-88E Advanced Anti-Radiation Guided Missile (AARGM) FOT&E Test Plan and disapproved the following two TEMPS and one Test Plan:

• T-AO(X) Fleet Replenishment Oiler TEMP
• AH-64E Version 6 Capability Apache Helicopter TEMP
• Defense Enterprise Accounting Management System (DEAMS) Verification of Fixes Test Plan

In FY16, DOT&E prepared 23 reports for Congress and SECDEF: 1 Cybersecurity report, 5 Early Fielding reports, 3 FOT&E reports, 1 Information Assurance and Interoperability report, 5 IOT&E reports, 1 Operational Assessment (OA) report, 2 OT&E reports, 2 special reports, and the Ballistic Missile Defense System Annual Report. Additionally, DOT&E prepared 51 non-Congressional reports for DOD stakeholders: 10 Cybersecurity reports, 1 Early Operational Assessment report, 8 FOT&E reports, 2 Force Development Evaluation reports, 3 IOT&E reports, 1 Lead Site Verification Test report, 2 Limited User Test reports, 11 OA reports, 2 OT&E reports, 2 Operational Utility Evaluation reports, 1 Quick Reaction Assessment report, and 8 special reports. Some of these non-Congressional reports were submitted to Defense Acquisition Board (DAB) principals for consideration in DAB deliberations.

During FY16, DOT&E met with Service operational test agencies, program officials, private sector organizations, and academia; monitored test activities; and provided information to Congress, SECDEF, the Deputy Secretary of Defense, Service Secretaries, USD(AT&L), DAB principals, and the DAB committees. DOT&E evaluations are informed in large part through active on-site participation in, and observation of, tests and test-related activities. In FY16, DOT&E’s experts joined test-related activities on 222 local trips within the National Capital Region and 827 temporary duty assignment trips in support of the DOT&E mission.

Security considerations preclude identifying classified programs in this report. The objective, however, is to ensure operational effectiveness and suitability do not suffer due to extraordinary security constraints imposed on those programs.

<table>
<thead>
<tr>
<th>TEST AND EVALUATION MASTER PLANS / STRATEGIES APPROVED (*INCLUDES LIVE FIRE STRATEGY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-130J Milestone C TEMP Version 6</td>
</tr>
<tr>
<td>Advanced Multi-Purpose (AMP) Cartridge, 120 mm: High Explosive Multi-Purpose with Tracer (HEMP-T), XM1147 TEMP*</td>
</tr>
<tr>
<td>Airborne Warning and Control System (AWACS) Block 40/45 Upgrade TEMP</td>
</tr>
<tr>
<td>Amphibious Combat Vehicle (ACV) 1.1 TEMP*</td>
</tr>
<tr>
<td>AN/BLQ-10 Submarine Electronic Warfare TEMP</td>
</tr>
<tr>
<td>B-2A Defensive Management System-Modernization (DMS-M) Milestone B TEMP</td>
</tr>
<tr>
<td>Bradley Engineering Change Proposal TEMP</td>
</tr>
<tr>
<td>CH-47F Cargo Helicopter TEMP</td>
</tr>
<tr>
<td>Defense Agencies Initiative (DAI) Increment 2 Release 3 TEMP</td>
</tr>
<tr>
<td>Defense Medical Information Exchange (DMIX) TEMP (Revised)</td>
</tr>
<tr>
<td>DOD Automated Biometric Identification System (ABIS) v1.2 TEMP</td>
</tr>
<tr>
<td>E-2D TEMP Revision D Change 1</td>
</tr>
<tr>
<td>F-22 Increment 3.2B Milestone TEMP</td>
</tr>
<tr>
<td>Global Broadcast Service TEMP Update</td>
</tr>
<tr>
<td>Ground Based Strategic Deterrent (GBSD) TEMP</td>
</tr>
<tr>
<td>Ground/Air Task Oriented Radar (G/ATOR) Milestone C TEMP</td>
</tr>
<tr>
<td>Guided Multiple Launch Rocket System (GMLRS) Alternative Warhead (AW) Rocket TEMP*</td>
</tr>
<tr>
<td>Handheld, Manpack and Small form fit (HMS) Rifleman Radio TEMP</td>
</tr>
<tr>
<td>Improved Turbine Engine Program (IITEP) TEMP</td>
</tr>
<tr>
<td>Joint Assault Bridge (JAB) TEMP*</td>
</tr>
<tr>
<td>Joint Light Tactical Vehicle (JLTV) Milestone C TEMP*</td>
</tr>
<tr>
<td>Joint Precision Aided Landing System (JPALS) Increment 1A Milestone B TEMP</td>
</tr>
<tr>
<td>Joint Surveillance Target Attack Radar System (JSTARS) Recapitalization Milestone A TEMP</td>
</tr>
<tr>
<td>Joint Warning and Reporting Network (JWARN) Increment 2 TEMP</td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS) TEMP Change Pages</td>
</tr>
<tr>
<td>Logistics Modernization Program (LMP) Increment 2 Milestone C TEMP</td>
</tr>
<tr>
<td>Long Range Precision Fires (LRPF) Missile Milestone A TEMP (Pre-Decisional)*</td>
</tr>
<tr>
<td>Long Range Standoff (LRSO) Milestone A TEMP</td>
</tr>
<tr>
<td>Maneuver Control System (MCS) TEMP Annex for Command Web Mid-tier Networking Vehicular Radio (MNVR) TEMP</td>
</tr>
<tr>
<td>MQ-4 Triton Unmanned Aircraft System (UAS) Milestone C TEMP</td>
</tr>
</tbody>
</table>

Activity
Multifunctional Information Distribution System (MIDS) Joint Tactical Radio System (JTRS) with Concurrent Multinetting/Concurrent Contention Receive (CMN/CCR) TEMP Annex K Revision A Change 1 Transmittal Proposal
Next Generation Jammer (NGJ) Increment 1 Milestone B TEMP

Public Key Infrastructure (PKI) Increment 2 Spiral 3 TEMP Addendum
RQ-4B Global Hawk Capstone TEMP
Teleport, Generation 3 (G3P3) TEMP Update
Third Generation Forward Looking Infrared (3GEN FLIR) B-Kit TEMP

OPERATIONAL TEST PLANS APPROVED

AC-130J Block 10 Operational Utility Evaluation Test Plan
Aegis (Ashore) Ballistic Missile Defense (ABMD) 5.0 Capability Upgrade Baseline 9B Cybersecurity IOT&E Test Plan
Aegis Weapon System (AWS) Baseline 9C Air Defense Destroyer IOT&E Plan Change 1
Airborne Warning and Control System (AWACS) Block 40/45 FOT&E Cyberspace Vulnerability Assessment Plan
AN/APR-39D(V)2 Radar Signal Detecting Set Anechoic Chamber Test Using the Joint Preflight Integration of Munitions and Electronic Systems (JPRIMES) Test Facility Test Support Plan
AN/APR-39D(V)2 Radar Signal Detecting Set Developmental Test 2 Operational Assessment Detailed Test Plan
AN/BLQ-10A Submarine Electronic Warfare Support System with Technical Insertion 10 Advanced Processor Build (APB)-11 and AN/BSD-3 Multifunction Modular Mast (FOMM) Test Plan
AN/BQQ-10(V) Acoustic Rapid Commercial Off-The-Shelf Insertion (A-RCI) APB-13 Integrated Testing Data Collection Plan
AN/BYG-1(V) Combat Control System and AN/BQQ-10(V) Sonar System APB-13 Integrated Evaluation Framework
AN/BYG-1(V) Combat Control System, AN/BQQ-10 A-RCI System, and AN/BVV-1 Common Submarine Imaging System APB-13 Cybersecurity FOT&E Test Plan
AN/SQQ-89A(V)15 Surface Ship Undersea Warfare (USW) Combat System IOT&E Test Plan Change 3
Army Integrated Air and Missile Defense (AIAMD) Phases I and II Limited User Test (LUT) Test Plan
Army Integrated Air and Missile Defense (AIAMD) Phase III LUT Test Plan Change
Assault Amphibious Vehicle Survivability Upgrade, Engineering and Manufacturing Development Phase Detailed Live Fire Test Plan
Ballistic Missile Defense System (BMDS) Integrated Master Test Plan
Blue Grass Chemical Agent-Destruction Pilot Plant (BGCAPP) Test Concept Plan
Bradley A4 LFT&E Bradley Reactive Armor Tile Test Phase Combined Operational Test Agency Test Plan and Detailed Test Plan (DTP)
C-130J Block Upgrade 8.1 OA Test Plan
CH-53K OA (OT-B1) Test Plan
Combat Rescue Helicopter OA 1 Test Plan
Command Web LUT Test Plan
Common Analytical Laboratory System (CALS) Man Portable System DT/OT Plan
Common Analytical Laboratory System (CALS) User Demonstration Phase 1 Test Plan

Common Aviation Command and Control System (CAC25) Cooperative Vulnerability Assessment Plan
Common Aviation Command and Control System (CAC25) Increment 1 Phase 2 Operational Test Plan
Cooperative Engagement Capability (CEC) OT-D1C FOT&E Test Plan
Defense Agencies Initiative (DAI) OA Test Plan
Defense Medical Information Exchange (DMIIX) Release 3 Operational Test Plan
Defense Medical Information Exchange/Joint Legacy Viewer (DMIIX/JLV) Release 2 Verification of Corrected Deficiencies Event Test Plan
Department of the Navy Large Aircraft Infrared Countermeasure (DoN LAIRCM) V-22 Urgent Universal Need Statement Developmental Test Data Collection Plan
Department of the Navy Large Aircraft Infrared Countermeasure with Advanced Threat Warning (DoN LAIRCM ATW) AH-64, CH-47, and H-60 Integration Test Plan
Department of the Navy Large Aircraft Infrared Countermeasure with Advanced Threat Warning (DoN LAIRCM ATW) KC-130J Data Collection Plan
E-2D Advanced Hawkeye FOT&E Test Plan
E-2D OT-D2 Cybersecurity Test Plan
Expeditionary Mobile Base (ESB) IOT&E Test Plan
F/A-18E/F Infrared Search and Track System (IRST) Block I OA II Test Plan
F-35 Joint Strike Fighter (JSF) Air Vehicle Cybersecurity Cooperative Vulnerability and Penetration Assessment Plan
F-35 Joint Strike Fighter (JSF) Cybersecurity Operational Test Plan
Global Broadcast System FOT&E-1 Test Plan
Global Command and Control System – Joint (GCCS-J) Version 4.3 Cybersecurity Test Plan
Global Lighting 16 Assessment Plan
Global Thunder 16 Assessment Plan
Heavy Equipment Transporter (HET) Urban Survivability Kit (HUSK) Operational Test Agency Test Plan and Detailed Test Plan Revision
Heavy Equipment Transporter (HET) Urban Survivability Kit (HUSK) Operational Test Agency Test Plan
Integrated Master Test Plan (IMTP) v17.0
Jackal Stone (U.S. European Command) Assessment Plan
Jackal Stone (U.S. Special Operations Command) Assessment Plan
Joint Warning and Reporting Network (JWARN) IOT&E Test Plan
LHA(R) Amphibious Assault Ship Replacement (LHA(R) FLT 0) Cybersecurity IOT&E / Ship Self Defense System (SSDS) MK 2 MOD 4 Cybersecurity FOT&E Test Plan
LHA(R) Amphibious Assault Ship Replacement (LHA(R) FLT 0) IOT&E Test Plan
Littoral Combat Ship (LCS) 4 Total Ship Survivability Trial Plan
Littoral Combat Ship (LCS) 4 with Surface Warfare (SUW) Mission Package Increment 2 Cybersecurity IOT&E Test Plan
Littoral Combat Ship (LCS) 5 Shock Trial Plan
Littoral Combat Ship (LCS) 6 Full Ship Survivability Trial Plan
Littoral Combat Ship (LCS) Independence-Variant ET-11B Phase 1 Air Warfare Data Collection Plan
M109 Family of Vehicles, M109A7 Self-Propelled Howitzer (SPH) and M992A3 Carrier, Ammunition, Tracked (CAT) Full-Up System-Level Test Operational Test Agency Test Plan and Detailed Test Plan
M109 Family of Vehicles IOT&E Test Plan
M1A2 Abrams System Enhancement Package Version 3 (SEPv3) Engineering Change Proposal 1a Turret Half-Bustle Ammunition Vulnerability Test Phase I LFT&E Test Plan
Marine Corps Forces Central Command (MARCENT) Forward Site Assessment
MK 48 MOD 7 Common Broadband Advanced Sonar System (CBASS) Torpedo with APB-5 Software Integrated Evaluation Framework Revision 1 (Change One)
MK 54 MOD 1 Lightweight Torpedo (LWT) Increment 1 LFT&E Test Plan
Mobile Landing Platform (MLP) Total Ship Survivability Trial Plan
Mobile User Objective System (MUOS) MOT&E Test Plan
MQ-8C System OA Test Plan
MQ-9 FOT&E Test Plan
Navy Multiband Terminal (NMT) FOT&E Test Plan
Next Generation Diagnostic System (NGDS) Increment 1 OA Test Plan
Offensive Anti-Surface Warfare (OASuW) Increment 1 Long Range Anti-Ship Missile (LRASM) Master Test Strategy
Pacific Sentry 16 Assessment Plan
PANAMAX 2016 Final Assessment Plan
Patriot Post-Deployment Build-8 (PFB-8) IOT&E Test Plan
Pueblo Chemical Agent-Destruction Pilot Plant (PCAPP) Test Evaluation Plan
Ship Self-Defense System (SSDS) MK 2 FOT&E Test Plan
Small Arms Protective Insert (SAPI) Foreign Military Sales Lot Acceptance Test Detailed Test Plan
Small Diameter Bomb II (SDB-II) LFT&E Hybrid Testing Plan
Small Diameter Bomb, Increment II (SDB II) Live Fire Flight Tests (LF 07 – LF 10) LFT&E Test Plan
Soldier Protection System (SPS) Torso and Extremity Protection (TEP) Expanded Developmental Test Detailed Test Plan
Soldier Protection System (SPS) Vital Torso Protection (VTP) Enhanced Small Arms Protective Insert (ESAPI) First Article Test Detailed Test Plan
Space-Based Infrared System (SBIRS) Block 10 Operational Utility Evaluation Test Plan
Spider M7E1 Increment 1A (S1A1), LUT Test Plan
SSN 774 Virginia Class Block III Submarines Cybersecurity Test Plan
Stryker Family of Vehicles Engineering Change Proposal Operational Test Agency Test Plan and Detailed Test Plan
Stryker Family of Vehicles World Wide Fielding Detailed Live Fire Test Plan Deviation
Stryker Family of Vehicles World Wide Fielding Operational Test Agency Test Plan and Detailed Test Plan
Surface Electronic Warfare Improvement Program (SEWIP) Block 2 IOT&E Test Plan Change Transmittal 3
Surface Electronic Warfare Improvement Program (SEWIP) Block 2 TECHEVAL Phase B Test Plan
Theater Medical Information Program – Joint (TMIP-J) Increment 2 Release 3 MOT&E Test Plan – Navy Annex
U.S. Marine Corps Large Scale Exercise Assessment Plan
Valiant Shield 16 Assessment Plan

LIVE FIRE TEST AND EVALUATION STRATEGY APPROVED

Soldier Protection System (SPS) Live Fire Strategy
<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cybersecurity Report</td>
<td></td>
</tr>
<tr>
<td>Department of Defense (DOD) Cybersecurity During Fiscal Year 2014 and Early Fiscal Year 2015</td>
<td>November 2015</td>
</tr>
<tr>
<td>Early Fielding Reports</td>
<td></td>
</tr>
<tr>
<td>Aegis Baseline 9C Cruiser</td>
<td>November 2015</td>
</tr>
<tr>
<td>SLQ-32(V)/6 Surface Electronic Warfare Improvement Program (SEWIP) Block 2 Upgrade</td>
<td>December 2015</td>
</tr>
<tr>
<td>Rolling Airframe Missile (RAM) Block 2</td>
<td>March 2016</td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS) 2 with Mine Countermeasures (MCM) Mission Package (MP) Increment 2</td>
<td>June 2016</td>
</tr>
<tr>
<td>Massive Ordnance Penetrator (MOP) Enhanced Threat Response (ETR) Phase 3</td>
<td>September 2016</td>
</tr>
<tr>
<td>Follow-on Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Multi-static Active Coherent (MAC) System in P-8A Poseidon</td>
<td>December 2015</td>
</tr>
<tr>
<td>Distributed Common Ground System – Army (DCGS-A) Increment 1 Release 2 with classified cyber annex</td>
<td>January 2016</td>
</tr>
<tr>
<td>Information Assurance and Interoperability Report</td>
<td></td>
</tr>
<tr>
<td>Initial Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>AN/TPQ-53 (Q-53) Radar (with classified annex)</td>
<td>October 2015</td>
</tr>
<tr>
<td>Surveillance Towed-Array Sensor System (SURTASS) with the Compact Low-Frequency Active (CLFA) System</td>
<td>January 2016</td>
</tr>
<tr>
<td>Precision Guidance Kit (PGK)</td>
<td>March 2016</td>
</tr>
<tr>
<td>Common Aviation Command and Control System (CAC2S), Increment 1, Phase 2</td>
<td>August 2016</td>
</tr>
<tr>
<td>Surface Electronic Warfare Improvement Program (SEWIP) Block 2</td>
<td>September 2016</td>
</tr>
<tr>
<td>Live Fire Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Multiple Launch Rocket (MLRS) M270A1 Launcher Improved Armored Cab (IAC)</td>
<td>June 2016</td>
</tr>
<tr>
<td>Soldier Protection System (SPS) Torso and Extremities Protection (TEP)</td>
<td>September 2016</td>
</tr>
<tr>
<td>Operational Assessment Report</td>
<td></td>
</tr>
<tr>
<td>Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>M829A4 120 mm Armor-Piercing, Fin-Stabilized, Discarding Sabot - Tracer (APFSDS-T)</td>
<td>December 2015</td>
</tr>
<tr>
<td>Special Reports</td>
<td></td>
</tr>
<tr>
<td>DOT&E classified and redacted/unclassified inputs for the report required by Section 123 the National Defense Authorization Act for Fiscal Year 2016 (Public Law 114-92) (Update from FY14 and FY15 Inputs)</td>
<td>January 2016</td>
</tr>
<tr>
<td>Market Survey of Active Protection Systems (APS) for Ground Combat and Tactical Wheeled Vehicles</td>
<td>June 2016</td>
</tr>
<tr>
<td>Ballistic Missile Defense System Report</td>
<td></td>
</tr>
<tr>
<td>FY15 Assessment of the Ballistic Missile Defense System (includes unclassified Executive Summary)</td>
<td>April 2016</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>DATE</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Cybersecurity Reports</td>
<td></td>
</tr>
<tr>
<td>Global Lightning 2014 (GL14) and GL15 Cybersecurity Assessment</td>
<td>October 2015</td>
</tr>
<tr>
<td>Austere Challenge 15 Cybersecurity Assessment</td>
<td>November 2015</td>
</tr>
<tr>
<td>Turbo Challenge 15 Cybersecurity Assessment</td>
<td>November 2015</td>
</tr>
<tr>
<td>Pacific Sentry 2015-3 Cybersecurity Assessment</td>
<td>February 2016</td>
</tr>
<tr>
<td>Cybersecurity Assessment of Special Operations Command Pacific (SOC PAC) Tempest Wind 2015 Exercise</td>
<td>March 2016</td>
</tr>
<tr>
<td>Marine Forces Central Command (MARCENT) Forward (FWD) Cybersecurity Assessment</td>
<td>May 2016</td>
</tr>
<tr>
<td>Global Thunder 16 Cybersecurity Assessment</td>
<td>May 2016</td>
</tr>
<tr>
<td>USS Harry S. Truman Carrier Strike Group (HSTCSG) Composite Unit Training Exercise 2015</td>
<td>June 2016</td>
</tr>
<tr>
<td>Cybersecurity Assessment of U.S. Africa Command (USAFRICOM) During Epic Guardian Exercise</td>
<td>September 2016</td>
</tr>
<tr>
<td>Early Operational Assessment Report</td>
<td></td>
</tr>
<tr>
<td>Next Generation Jammer (NGJ)</td>
<td>February 2016</td>
</tr>
<tr>
<td>Follow-on Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Integrated Personnel and Pay System – Army (IPPS-A) Increment 1 Cybersecurity Evaluation</td>
<td>October 2015</td>
</tr>
<tr>
<td>Joint Warning and Reporting Network (JWARN) Increment 1 FOT&E-3 with classified annex</td>
<td>December 2015</td>
</tr>
<tr>
<td>Gray Eagle One System Remote Video Terminal (OSRVT) with classified annex</td>
<td>January 2016</td>
</tr>
<tr>
<td>Distributed Common Ground System – Navy (DCGS-N) Increment 1 Block 2 with classified Annex</td>
<td>May 2016</td>
</tr>
<tr>
<td>E-2D Advanced Hawkeye (AHE)</td>
<td>May 2016</td>
</tr>
<tr>
<td>OT-IIIC of Upgrades to Marine Corps AH-1Z Attack and UH-1Y Utility Helicopters (H-1 Upgrades)</td>
<td>May 2016</td>
</tr>
<tr>
<td>Department of the Navy Large Aircraft Infrared Countermeasures (DoN LAIRCM) Advanced Threat Warning (ATW) System</td>
<td>June 2016</td>
</tr>
<tr>
<td>Force Development Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Air Force Distributed Common Ground System (AF DCGS) Geospatial Intelligence (GEOINT) Baseline 4.1</td>
<td>November 2015</td>
</tr>
<tr>
<td>Initial Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Logistics Modernization Program (LMP) Increment 2 Wave 3 with classified Annex</td>
<td>April 2016</td>
</tr>
<tr>
<td>Defense Readiness Reporting System-Strategic (DRRS-S) with classified Annex</td>
<td>April 2016</td>
</tr>
<tr>
<td>RQ-4B Global Hawk Block 40</td>
<td>August 2016</td>
</tr>
<tr>
<td>Lead Site Verification Test Report</td>
<td></td>
</tr>
<tr>
<td>Global Combat Support System – Army (GCSS-A)</td>
<td>November 2015</td>
</tr>
<tr>
<td>Limited User Test Reports</td>
<td></td>
</tr>
<tr>
<td>Key Management Infrastructure (KMI) Spiral 2 Spin 1 Limited User Test Retest</td>
<td>October 2015</td>
</tr>
<tr>
<td>Mid-Tier Networking Radio (MNVR)</td>
<td>November 2015</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>DATE</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Operational Assessment Reports</td>
<td></td>
</tr>
<tr>
<td>Defense Medical Information Exchange (DMIX) Release 2 Classified Appendix</td>
<td>November 2015</td>
</tr>
<tr>
<td>(Cybersecurity Assessment)</td>
<td></td>
</tr>
<tr>
<td>MaxxPro Long Wheel Base Ambulance (LWB) with classified Live Fire Report</td>
<td>December 2015</td>
</tr>
<tr>
<td>DOD Teleport Generation 3, Phase 3 with classified Annex</td>
<td>December 2015</td>
</tr>
<tr>
<td>Defense Agency Initiative (DAI) Operational Assessment</td>
<td>February 2016</td>
</tr>
<tr>
<td>MQ-4C Triton Operational Assessment</td>
<td>May 2016</td>
</tr>
<tr>
<td>MQ-8C Fire Scout Operational Assessment</td>
<td>June 2016</td>
</tr>
<tr>
<td>Mid-Tier Network and Mid-tier Networking Vehicular Radio (MNVR)</td>
<td>July 2016</td>
</tr>
<tr>
<td>Milestone C Operational Assessment</td>
<td></td>
</tr>
<tr>
<td>F-22A Increment 3.2B Operational Assessment and Readiness</td>
<td>July 2016</td>
</tr>
<tr>
<td>for Milestone C Findings and Observations</td>
<td></td>
</tr>
<tr>
<td>with classified Annex</td>
<td></td>
</tr>
<tr>
<td>KC-46A Operational Assessment #2 with classified Annex</td>
<td>August 2016</td>
</tr>
<tr>
<td>Warfighter Information Network - Tactical (WIN-T) Increment 3</td>
<td>September 2016</td>
</tr>
<tr>
<td>Operational Assessment with classified annex</td>
<td></td>
</tr>
<tr>
<td>Operational Test and Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Theater Medical Information Program – Joint (TMIP-J) MOT&E Report</td>
<td>March 2016</td>
</tr>
<tr>
<td>with classified Annex</td>
<td></td>
</tr>
<tr>
<td>(MOT&E)</td>
<td></td>
</tr>
<tr>
<td>Operational Utility Evaluation Reports</td>
<td></td>
</tr>
<tr>
<td>Operational Utility Evaluation of Block 10 AC-130J Gunship</td>
<td>June 2016</td>
</tr>
<tr>
<td>Air Force Distributed Common Ground System (AF DCGS) System Release 3.0</td>
<td>July 2016</td>
</tr>
<tr>
<td>(SR 3.0)</td>
<td></td>
</tr>
<tr>
<td>Quick Reaction Assessment Report</td>
<td></td>
</tr>
<tr>
<td>MQ-8B Fire Scout Radar</td>
<td>March 2016</td>
</tr>
<tr>
<td>Special Reports</td>
<td></td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS) and Mine Countermeasures (MCM) Mission</td>
<td>November 2015</td>
</tr>
<tr>
<td>Package Increment 1 Performance (Interim Assessment)</td>
<td></td>
</tr>
<tr>
<td>Defense Enterprise Accounting Management System (DEAMS) Verification</td>
<td>February 2016</td>
</tr>
<tr>
<td>of Fixes (VoF) Test</td>
<td></td>
</tr>
<tr>
<td>P-8A Multi-mission Maritime Aircraft Data Storage Architecture Upgrade</td>
<td>May 2016</td>
</tr>
<tr>
<td>(DSAU) and Verification of Correction of Deficiencies (VCD)</td>
<td></td>
</tr>
<tr>
<td>5.56x45 mm Cartridge Ammunition Study</td>
<td>August 2016</td>
</tr>
<tr>
<td>RQ-21A Blackjack Small Tactical Unmanned Aircraft System (STUAS) Initial</td>
<td>August 2016</td>
</tr>
<tr>
<td>Operational Test and Evaluation (IOT&E) Report Addendum</td>
<td></td>
</tr>
<tr>
<td>Approval of Military Combat Helmet Test Protocol Standard for Ballistic</td>
<td>September 2016</td>
</tr>
<tr>
<td>Testing for the Enhanced Combat Helmet (ECH) (Updated)</td>
<td></td>
</tr>
</tbody>
</table>
Program Oversight

DOT&E is responsible for approving the adequacy of plans for operational test and evaluation and for reporting the operational test results for all Major Defense Acquisition Programs (MDAPs) to Congress, SECDEF, the Service Secretaries, and USD(AT&L). Section 2430 of title 10, U.S. Code (10 USC 2430) defines MDAPs as those DOD acquisition programs that are not highly classified and that either meet high-dollar thresholds for research, development, test, and evaluation expenditure or have been designated as MDAPs by the SECDEF. These programs are included in Selected Acquisition Reports (SARs) submitted by USD(AT&L) to Congress. Additionally, 10 USC 139(a)(2)(B) stipulates that DOT&E may designate any other programs as MDAPs for the purpose of oversight, review, and reporting. Including such “non-major” programs, DOT&E was responsible for oversight of a total of 316 acquisition programs during FY16.

Non-major programs are selected for DOT&E oversight after careful consideration of the relative importance of the individual program. One or more of the following essential elements are considered when determining non-SAR systems for oversight:

- Congress or OSD agencies have expressed a high level of interest in the program.
- Congress has directed that DOT&E assess or report on the program as a condition for progress or production.
- The program requires joint or multi-Service testing (10 USC 139(b)(4) requires DOT&E to “coordinate operational testing conducted jointly by more than one military department or defense agency”).
- The program exceeds or has the potential to exceed the dollar threshold definition of a major program according to DOD Directive 5000.01, but does not appear on the current SAR list (e.g., highly-classified systems).
- The program has a close relationship to or is a key component of a major program.
- The program is an existing system undergoing major modification.
- The program was previously a SAR program and operational testing is not yet complete.

DOT&E is also responsible for the oversight of LFT&E programs in accordance with 10 USC 139. DOD regulation uses the term “covered system” to include all categories of systems or programs identified in 10 USC 2366 as requiring LFT&E. Systems or programs that do not have acquisition points referenced in 10 USC 2366, but otherwise meet the statutory criteria, are considered covered systems for the purpose of DOT&E oversight.

DOT&E has determined that a covered system, for the purpose of oversight for LFT&E, meets one or more of the following criteria:

- A major system, within the meaning of that term in 10 USC 2302(5), that is:
 - User-occupied and designed to provide some degree of protection to the system or its occupants in combat
 - A conventional munitions program or missile program
- A conventional munitions program for which more than 1,000,000 rounds are planned to be acquired.
- A modification to a covered system that is likely to affect significantly the survivability or lethality of such a system.

DOT&E was responsible for the oversight of 132 LFT&E acquisition programs during FY16.

Programs Under DOT&E Oversight
Fiscal Year 2016
(As taken from the September 2016 DOT&E Oversight List)

DOD PROGRAMS

AC-130J

BMDS - Ballistic Missile Defense System Program

CHEM DEMIL-ACWA - Chemical Demilitarization Program - Assembled Chemical Weapons Alternatives

CHEM DEMIL-CMA - Chemical Demilitarization (Chem Demil) - Chemical Materials Agency (Army Executing Agent)

Common Analytical Laboratory System

Defense Agency Initiative (DAI)

Defense Enterprise Accounting and Management System - Increment 1 (DEAMS - Inc. 1)

Defense Medical Information Exchange (DMIX)

Defense Security Assistance Management System (DSAMS) - Block 3

DoD Healthcare Management System Modernization (DHMSM)

EDS - Explosive Destruction System

Enterprise SATCOM Gateway Modern

EProcurement
DOD PROGRAMS (continued)

Global Command & Control System - Joint (GCCS-J) Modernized Intelligence Database (MIDB) Modernized Intelligence Database (MIDB)
Joint Aerial Layer Network Multi-Functional Information Distribution System (includes integration into USAF & USN aircraft)
Joint Biological Tactical Detection System Next Generation Chemical Detector
Joint Information Environment Next Generation Diagnostic System Increment 1 (NGDS Inc 1)
Joint Light Tactical Vehicle (JLTV) Public Key Infrastructure (PKI) Increment 2
Joint Operational Medicine Information Systems SOCOM Dry Combat Submersible Medium (DCSM)
Joint Regional Security Stack (JRSS) Teleport, Generation III
Joint Warning and Reporting Network (JWARN) Theater Medical Information Program - Joint (TMIP-J) Block 2
Key Management Infrastructure (KMI) Increment 2
Mid-Tier Networking Vehicle Radio
milCloud

ARMY PROGRAMS

3rd Generation Improved Forward Looking Infrared (3rd Gen FLIR) Cannon Delivered Area Effects Munitions (C-DAEM) Family of Munitions
Abrams Active Protection Systems (APS) CH-47F - Cargo Helicopter
ABRAMS TANK MODERNIZATION - Abrams Tank Modernization (M1E3) Chinook H-47 Block II
Abrams Tank Upgrade (M1A1 SA / M1A2 SEP) Command Post Computing Environment (CPCE)
Advanced Field Artillery Tactical Data System (AFATDS) Version 7 Common Infrared Countermeasures (CIRCM)
Advanced Multi-Purpose (AMP) 120 mm Tank Round Common Remotely Operated Weapons System III
AH-64E Apache Remanufacture/New Build Data Center / Cloud / Generating Force Computing Environment (DC/C/GFCE)
Airborne and Maritime/Fixed Site Joint Tactical Radio System (AMF JTRS) Department of Defense Automated Biometric Information System
Small Airborne Networking Radio (SANR) Distributed Common Ground System - Army (DCGS-A)
AN/PRC-117G Radio EXCALIBUR - Family of Precision, 155 mm Projectiles
AN/TPQ-53 Radar System (Q-53) Family of Small Unmanned Aircraft Systems
Armored Multipurpose Vehicle (AMPV) FBCB2 - Force XXI Battle Command Brigade and Below Program
Armored Truck - Heavy Dump Truck (HDT) FBCB2 - Joint Capability Release (FBCB2 - JCR)
Armored Truck - Heavy Equipment Transporter (HET) Fixed-Wing Utility Aircraft
Armored Truck - Heavy Expanded Mobility Tactical Truck (HEMTT) FMTV - Family of Medium Tactical Vehicles
Armored Truck - M915A5 Line Hauler Future Vertical Lift Capability Set 3 (FVL CS 3)
Armored Truck - M939 General Purpose Truck Gator Landmine Replacement Program (GLRP)
Armored Truck - Palletized Loading System (PLS) General Fund Enterprise Business System (GFEB5)
Army Integrated Air & Missile Defense (AIAMD) Global Combat Support System - Army (GCSS-A)
Army Tactical Missile System - Service Life Extension Program (ATACMS-SLEP) Guided Multiple Launch Rocket System - Unitary (GMLRS Unitary)
Army Vertical Unmanned Aircraft System Guided Multiple Launch Rocket System Alternate Warhead (GMLRS AW)
Assured Precision, Navigation & Timing (Assured PNT) HELLFIRE Romeo
Biometrics Enabling Capability (BEC) Increment 1 High Explosive Guided Mortar (HEGM)
Biometrics Enabling Capability Increment 0 High Mobility Multipurpose Wheeled Vehicle (HMMWV)
Black HAWK (UH-60M) - Utility Helicopter Program HIMARS - High Mobility Artillery Rocket System
Bradley Active Protection Systems (APS) Identification Friend or Foe Mark X11A Mode 5 (all development and integration programs)
Bradley Engineering Change Proposal (ECP) and Modernization Improved Turbine Engine Program
Brownout Rotorcraft Enhancement System (BORES) Indirect Fire Protection Capability Increment 2 - Intercept
C-17 Increase Gross Weight (IGW) and reduced Formation Spacing Requirements (FSR) with T-11 parachute
FY16 DOT&E ACTIVITY AND OVERSIGHT

ARMY PROGRAMS (continued)

Integrated Personnel and Pay System - Army (Army IPPS) Increment 1
Integrated Personnel and Pay System - Army (IPPS-A) Increment 2
Interceptor Body Armor
Javelin AntiTank Missile System - Medium
Joint Air-to-Ground Missile
Joint Assault Bridge
Joint Battle Command Platform (JBC-P)
Joint Tactical Networks (JTN)
Logistics Modernization Program (LMP)
Long Range Precision Fires (LRPF)
M270A1 Multiple Launch Rocket System (MLRS)
M829A4
M88A2 Heavy Equipment Recovery Combat Utility Lift Evacuation System (Hercules)
Mine Resistant Ambush Protected Vehicle Systems - including SOCOM vehicles
Mobile / Handheld Computing Environment (M/HCE)
Mobile Protected Firepower Increment 1 (MPF Inc 1)
Modernized Expanded Capacity Vehicle (MECV) - Survivability Project
Mounted Computing Environment (MCE)
MQ-1C Unmanned Aircraft System Gray Eagle
Near Real Time Identity Operations
Nett Warrior
One System Remote Video Terminal
Paladin/FASSV Integrated Management (PIM)
PATRIOT PAC-3 - Patriot Advanced Capability 3 (Missile only)
Real Time / Safety Critical / Embedded Computing Environment (RT/SC/ECE)
RQ-7B SHADOW - Tactical Unmanned Aircraft System
Sensor Computing Environment (SCE)
Soldier Protection System
Spider XM7 Network Command Munition
Stryker Active Protection Systems (APS)
STRYKER ECP - STRYKER Engineering Change Proposal
Stryker M1126 Infantry Carrier Vehicle including Double V-Hull variant
Stryker M1127 Reconnaissance Vehicle
Stryker M1128 Mobile Gun System
Stryker M1129 Mortar Carrier including the Double V-Hull variant
Stryker M1130 Commander's Vehicle including the Double V-Hull Variant
Stryker M1131 Fire Support Vehicle Including the Double V-Hull Variant
Stryker M1132 Engineer Squad Vehicle Including the Double V-Hull Variant
Stryker M1133 Medical Evacuation Vehicle Including the Double V-Hull Variant
Stryker M1134 ATGM Vehicle Including the Double V-Hull Variant
Stryker M1135 NBC Reassembly Vehicle (NBCRV)
Tactical Radio System Manpack
Tactical Radio System Rifleman Radio
UH-60V Black HAWK
UH-72A Lakota Light Utility Helicopter
WIN-T INCREMENT 1 - Warfighter Information Network - Tactical Increment 1
WIN-T INCREMENT 2 - Warfighter Information Network - Tactical Increment 2
WIN-T INCREMENT 3 - Warfighter Information Network - Tactical Increment 3
XM1156 Precision Guidance Kit (PGK)
XM1158 7.72 mm Cartridge
XM17 Modular Handgun System (XM17)
XM25, Counter Defilade Target Engagement (CDTE) System

NAVY PROGRAMS

Acoustic Rapid COTS Insertion for SONAR
Advanced Airborne Sensor
Advanced Arresting Gear
Advanced Extremely High Frequency Navy Multiband Terminal Satellite Program (NMT)
Advanced Off-board Electronic Warfare Program
AEGIS Modernization (Baseline Upgrades)
AGM-88E Advanced Anti-Radiation Guided Missile
AH-1Z
AIM-9X - Air-to-Air Missile Upgrade Block II
Air and Missile Defense Radar (AMDR)
Air Warfare Ship Self Defense Enterprise
Airborne Laser Mine Detection System (AN/AES-1) (ALMDS)
Airborne Mine Neutralization System (AN/ASQ-235) (AMNS)
Airborne Resupply/Logistics for Seabasing
Amphibious Assault Vehicle Upgrade
Amphibious Combat Vehicle Phase 1 Increment 1 (ACV 1.1)
AN/APR-39 Radar Warning Receiver
AN/AQS-20 Minehunting Sonar (all variants)
AN/BLQ-10 Submarine Electronics Support Measures
AN/SQQ-89A(V) Integrated USW Combat Systems Suite
Assault Breaching System Coastal Battlefield Reconnaissance and Analysis System Block I

Oversight 9
<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assault Breaching System Coastal Battlefield Reconnaissance and Analysis System Block II</td>
</tr>
<tr>
<td>Barracuda Mine Neutralization System</td>
</tr>
<tr>
<td>CANES - Consolidated Afloat Networks and Enterprise Services</td>
</tr>
<tr>
<td>CH-53K - Heavy Lift Replacement Program</td>
</tr>
<tr>
<td>Close-In Weapon System (CIWS) including SEARAM</td>
</tr>
<tr>
<td>CMV-22 Joint Services Advanced Vertical Lift Aircraft - Osprey -- Carrier Onboard Delivery</td>
</tr>
<tr>
<td>COBRA JUDY REPLACEMENT - Ship-based radar system</td>
</tr>
<tr>
<td>Common Aviation Command and Control System (CAC2S)</td>
</tr>
<tr>
<td>Cooperative Engagement Capability (CEC)</td>
</tr>
<tr>
<td>Countermeasure Anti-Torpedo</td>
</tr>
<tr>
<td>CVN-78 - GERALD R. FORD CLASS Nuclear Aircraft Carrier</td>
</tr>
<tr>
<td>DDG 1000 - ZUMWALT CLASS Destroyer - includes all supporting PARMs and the lethality of the LRLAP and 30mm ammunition</td>
</tr>
<tr>
<td>DDG 51 - ARLEIGH BURKE CLASS Guided Missile Destroyer - includes all supporting PARMs</td>
</tr>
<tr>
<td>DDG 51 Flight III - ARLEIGH BURKE CLASS Guided Missile Destroyer - includes all supporting PARMs</td>
</tr>
<tr>
<td>Dept of Navy Large Aircraft Infrared Countermeasures Program</td>
</tr>
<tr>
<td>Distributed Common Ground System - Navy (DCGS-N)</td>
</tr>
<tr>
<td>E-2D Advanced Hawkeye</td>
</tr>
<tr>
<td>EA-18G - Airborne Electronic Attack</td>
</tr>
<tr>
<td>Electro-Magnetic Aircraft Launching System</td>
</tr>
<tr>
<td>Electronic Procurement System</td>
</tr>
<tr>
<td>Enhanced Combat Helmet</td>
</tr>
<tr>
<td>Enterprise Air Surveillance Radar (EASR) (replacement for SPS-48 and SPS-49 air surveillance radars)</td>
</tr>
<tr>
<td>Evolved Sea Sparrow Missile (ESSM)</td>
</tr>
<tr>
<td>Evolved Sea Sparrow Missile Block 2</td>
</tr>
<tr>
<td>Expeditionary Transfer Dock (formerly Mobile Landing Platform (MLP) Core Capability Set (CCS) Variant and Expeditionary Mobile Base (formerly MLP Afloat Forward Staging Base (AFSB) Variant)</td>
</tr>
<tr>
<td>F/A-18E/F - SUPER HORNET Naval Strike Fighter</td>
</tr>
<tr>
<td>Future Pay and Personnel Management Solution (FPFS)</td>
</tr>
<tr>
<td>Ground/Air Task Oriented Radar (G/ATOR)</td>
</tr>
<tr>
<td>Identification Friend or Foe Mark XIIA Mode 5 (all development and integration programs)</td>
</tr>
<tr>
<td>Infrared Search and Track System</td>
</tr>
<tr>
<td>Integrated Defensive Electronic Countermeasures</td>
</tr>
<tr>
<td>Joint and Allied Threat Awareness System</td>
</tr>
<tr>
<td>Joint Precision Approach and Landing System</td>
</tr>
<tr>
<td>Joint Stand-Off Weapon C-1 variant (JSOW C-1)</td>
</tr>
<tr>
<td>KC-130J</td>
</tr>
<tr>
<td>Landing Ship Dock Replacement (LX(R))</td>
</tr>
<tr>
<td>Large Displacement Unmanned Undersea Vehicle</td>
</tr>
<tr>
<td>LCS Surface Warfare Mission Package Increment 3--Interim Surface to Surface Missile including Longbow Hellfire Missile (or other candidate missiles and their warheads)</td>
</tr>
<tr>
<td>LHA 6 - AMERICA CLASS - Amphibious Assault Ship - includes all supporting PARMs</td>
</tr>
<tr>
<td>LHA 8 Amphibious Assault Ship (America Class with well deck)</td>
</tr>
<tr>
<td>Light Armored Vehicle</td>
</tr>
<tr>
<td>Light Weight Tow Torpedo Countermeasure (part of LCS ASW Mission Module)</td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS) - includes all supporting PARMs, and 57mm lethality</td>
</tr>
<tr>
<td>Littoral Combat Ship Frigate modifications</td>
</tr>
<tr>
<td>Littoral Combat Ship Mission Modules including 30mm</td>
</tr>
<tr>
<td>Littoral Combat Ship Surface-to-Surface Missile (follow on to the interim SSM)</td>
</tr>
<tr>
<td>Littoral Combat Ship Variable Depth Sonar (LCS VDS)</td>
</tr>
<tr>
<td>Logistics Vehicle System Replacement</td>
</tr>
<tr>
<td>LPD 17 - SAN ANTONIO CLASS - Amphibious Transport Dock Ship - includes all supporting PARMs and 30mm lethality</td>
</tr>
<tr>
<td>LSD 41/49 Replacement</td>
</tr>
<tr>
<td>Maritime Tactical Command and Control</td>
</tr>
<tr>
<td>MH-60R Multi-Mission Helicopter Upgrade</td>
</tr>
<tr>
<td>MH-60S Multi-Mission Combat Support Helicopter</td>
</tr>
<tr>
<td>Mk 54 torpedo/MK - 54 VLA/MK 54 Upgrades Including High Altitude ASW Weapon Capability (HAAWC)</td>
</tr>
<tr>
<td>MK-48 CBASS Torpedo including all upgrades</td>
</tr>
<tr>
<td>Mobile User Objective System (MUOS)</td>
</tr>
<tr>
<td>MQ-4C Triton</td>
</tr>
<tr>
<td>MQ-8 Fire Scout Unmanned Aircraft System</td>
</tr>
<tr>
<td>Multi-static Active Coherent (MAC) System CNO project 1758</td>
</tr>
<tr>
<td>MV-22 Joint Services Advanced Vertical Lift Aircraft - Osprey</td>
</tr>
<tr>
<td>Naval Integrated Fire Control - Counter Air (NIFC-CA) From the Air</td>
</tr>
<tr>
<td>Navy Enterprise Resource Planning (ERP)</td>
</tr>
<tr>
<td>Next Generation Jammer</td>
</tr>
<tr>
<td>Next Generation Land Attack Weapon</td>
</tr>
<tr>
<td>Offensive Anti-Surface Warfare Increment 1</td>
</tr>
<tr>
<td>Offensive Anti-Surface Warfare, Increment 2 (Air and Surface Launch)</td>
</tr>
<tr>
<td>OHIO Replacement Program (Sea-based Strategic Deterrence) - including all supporting PARMs</td>
</tr>
<tr>
<td>P-8A Poseidon Program</td>
</tr>
<tr>
<td>Remote Minehunting System (RMS)</td>
</tr>
<tr>
<td>Replacement Oiler</td>
</tr>
<tr>
<td>Rolling Airframe Missile (RAM) including RAM Block 1A Helicopter Aircraft Surface (HAS) and RAM Block 2 Programs</td>
</tr>
<tr>
<td>RQ-21A Unmanned Aircraft System (UAS)</td>
</tr>
<tr>
<td>Ship Self Defense System (SSDS)</td>
</tr>
</tbody>
</table>
NAVY PROGRAMS (continued)

Ship to Shore Connector
Small Surface Combatant (also called the Frigate modification to the Littoral Combat Ship variants) including the Anti-Submarine and Surface Warfare component systems
SSN 774 VIRGINIA Class Submarine
SSN 784 VIRGINIA Class Block III Submarine
Standard Missile 2 (SM-2) including all mods
Standard Missile-6 (SM-6)
Submarine Torpedo Defense System (Sub TDS) including countermeasures and Next Generation Countermeasure System (NGCM)
Surface Electronic Warfare Improvement Program (SEWIP) Block 2
Surface Electronic Warfare Improvement Program (SEWIP) Block 3
Surface Mine Countermeasures Unmanned Undersea Vehicle (also called Knifefish UUV) (SMCM UUV)

Surveillance Towed Array Sonar System/Low Frequency Active (SURTASS/LFA) including Compact LFA (CLFA)
Tactical Tomahawk Modernization and Enhanced Tactical Tomahawk (Maritime Strike) (includes changes to planning and weapon control system)
Torpedo Warning System (Previously included with Surface Ship Torpedo Defense System) including all sensors and decision tools
TRIDENT II MISSILE - Sea Launched Ballistic Missile
UH-1Y
Unmanned Carrier Launched Airborne Surveillance and Strike System
Unmanned Influence Sweep System (UISS) include Unmanned Surface Vessel (USV) and Unmanned Surface Sweep System (US3)
USMC MRAP-Cougar
VH-92A Presidential Helicopter

AIR FORCE PROGRAMS

20mm PGU-28/B Replacement Combat Round
Advanced Pilot Trainer
AEHF - Advanced Extremely High Frequency (AEHF) Satellite Program
AFNet Modernization capabilities (Bitlocker, Data at Rest (DaR), Situational Awareness Modernization (SAMP))
AIM-120 Advanced Medium-Range Air-to-Air Missile
Air Force Distributed Common Ground System (AF-DCGS)
Air Force Integrated Personnel and Pay System (AF-IPPS)
Air Force Mission Planning Systems Increment 5
Air Force Organic Depot Maintenance, Repair and Overhaul Initiative (MROI)
Air Operations Center - Weapon System (AOC-WS) 10.1
Air Operations Center - Weapon System (AOC-WS) 10.2
Airborne Signals Intelligence Payload (ASIP) Family of Sensors
Airborne Warning and Control System Block 40/45 Computer and Display Upgrade
B-2 Defensive Management System Modernization (DMS)
B-2 Extremely High Frequency (EHF) SATCOM
B61 Mod 12 Life Extension Program
Battle Control System - Fixed (BCS-F) 3.2
C-130J - HERCULES Cargo Aircraft Program
Cobra Judy Replacement Mission Planning Tool
Combat Rescue Helicopter (CRH)
Command and Control Air Operations Suite (C2AOS)/Command and Control Information Services (C2IIS) (Upgrade to AOC applications software suite)
CV-22 Joint Services Advanced Vertical Lift Aircraft - Osprey
Deliberate and Crisis Action Planning and Execution Segments (DCAPES) Inc. 2B
ECSS - Expeditionary Combat Support system
Enclave Control Node (ECN)
EPS - Enhanced Polar System
F-15 Eagle Passive Active Warning Survivability System
F-22 - RAPTOR Advanced Tactical Fighter
F-35 - Lightning II Joint Strike Fighter (JSF) Program
FAB-T - Family of beyond Line-of-Sight Terminals
Full Scale Aerial Target
GBS - Global Broadcast Service
Geosynchronous Space Situational Awareness Program
GPS OCX - Global Positioning Satellite Next Generation Control Segment
GPS-III - Global Positioning Satellite III
Ground Based Strategic Deterrent
Hard Target Munition
Identification Friend or Foe Mark XIIIA Mode S (all development and integration programs)
Integrated Strategic Planning and Analysis Network (ISPAN) Increment 4
Joint Air-to-Surface Standoff Missile Extended Range
Joint Space Operations Center Mission System (JMS)
Joint Surveillance Target Attack Radar System (JSTARS) Recapitalization (Recap)
KC-46 - Tanker Replacement Program
Long Range Stand Off (LRSO) Weapon
Long Range Strike Bomber
Massive Ordnance Penetrator (MOP)
Military GPS User Equipment (GPS MGUE)
Miniature Air Launched Decoy-Jammer (MALD-J)
MQ-9 REAPER - Unmanned Aircraft System
NAVSTAR Global Positioning System (GPS) (Includes Satellites, Control and User Equipment)

Oversight 11
<table>
<thead>
<tr>
<th>Nuclear Planning and Execution System</th>
<th>SBSS B10 Follow-on - Space-Based Space Surveillance Block 10 Follow-on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presidential Aircraft Recapitalization</td>
<td>SF - Space Fence</td>
</tr>
<tr>
<td>Presidential National Voice Conferencing</td>
<td>Small Diameter Bomb, Increment II</td>
</tr>
<tr>
<td>Protected Tactical Enterprise Service</td>
<td>Three-Dimensional Expeditionary Long-Range Radar (3DELRR)</td>
</tr>
<tr>
<td>RQ-4B Block 30 - High Altitude Endurance Unmanned Aircraft System</td>
<td>Weather Satellite Follow-on (WSF)</td>
</tr>
<tr>
<td>SBIRS HIGH - Space-Based Infrared System Program, High Component</td>
<td>Wide Area Surveillance (WAS) Program</td>
</tr>
</tbody>
</table>
Operational testing of acquisition programs frequently identifies new and significant problems missed in earlier phases of program development, but it can also find problems known prior to operational testing that were unaddressed. The latter is especially problematic, as delays in addressing these problems only exacerbate the cost and time required to fix them. Since 2011, my annual reports have documented both types of problems and the extent to which they exist in programs undergoing operational tests. This year, as in previous years, examples of both were present. Highlighting each of these types of problems is valuable, as the different natures of these types offer insights into the actions needed to field weapons that work.

Discovering problems during operational testing is crucial so they can be fixed prior to system deployment and use in combat. In many cases, an operational environment or user is necessary to uncover the problem. For example, operational aircraft were necessary for the Integrated Defensive Electronic Countermeasures (IDECM) program to discover an unknown hardware problem with the environmental control system, which led to cabin pressurization problems in operationally representative F/A-18C/D aircraft. This problem could not have been discovered in earlier test phases because they used modified developmental aircraft that did not have fully representative hardware. In contrast, the Littoral Combat Ship (LCS) has known problems with the propulsion and power generation systems installed on both variants that continue to affect LCS reliability. The Navy observed these problems again during operational testing and, in the case of the Freedom variant, caused the testing to be delayed.

The following discussion provides a summary of the significant problems discovered in FY16 during analyses of operational test events. Detailed accounts of the problems can be found in the corresponding individual program articles in this report. I also list 45 programs that presented significant problems during early testing of systems that have a scheduled operational test in the next two fiscal years. If left uncorrected, these problems could negatively affect my evaluation of operational effectiveness, operational suitability, or survivability. At the conclusion of this section, I report on the progress of the significant problems reported in my FY15 Annual Report.

The results of problem discovery in FY16 are shown in Figure 1. There were 131 programs on the DOT&E oversight list with operational test activity conducted and/or planned between FY16 and FY18. Of those, 74 programs had a total of 83 operational tests or DOT&E reports issued in FY16 (some programs had more than one phase of operational testing this year). Almost one-third (25/83) of the operational tests had no significant problems, while more than two-thirds (58/83) revealed problems significant enough to adversely affect my determination of whether the systems were operationally effective, suitable, or survivable. More than 35 percent (30/83) of these operational tests discovered significant problems that were unknown prior to operational testing.

![Figure 1. Programs Under Oversight with Operational Tests in FY16-FY18](Note: Programs may have more than one test event between FY16-FY18.)
This year, I identified 179 significant problems across three operational testing areas: effectiveness, suitability, and survivability. Figure 2 shows the distribution of the significant problems found during operational testing by area and whether the problem was known prior to the operational test. Approximately two-thirds of problems (130/179) were known before operational testing. There are several reasons for this. Sometimes the Program Office had already documented a fix for these problems but had not finished implementing it. For example, the Navy discovered a reliability deficiency with the Standard Missile (SM)-6 missile uplink/downlink antennas in developmental testing, but was not able to fix all the missiles before the Block I FOT&E (the anomaly was not observed on any missile with the production fixes during FOT&E). Occasionally, previously documented problems were not considered significant enough to halt progression into the operational test, but the operational test provided new insights that amplified the problem’s significance. For example, the Missile Defense Agency concluded that obsolescence changes made between Terminal High-Altitude Area Defense (THAAD) Configuration 1 and Configuration 2 did not affect functionality, but during Flight Test Operational (FTO) - 02, when the full system was integrated, the changes were observed to negatively affect suitability. Other times, a problem was rediscovered that the Program Office thought had already been fixed, such as when LCS-4 experienced disruptions in the flow of navigation data during its operational test. In some cases, the program tried to address the problem but was unable to eliminate it. Examples of this occurred in the CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier, which had low reliability for the Electromagnetic Aircraft Launch System (EMALS) and Advanced Arresting Gear (AAG). The Navy has been addressing known reliability problems in these components, but based on progress to-date, it is unlikely that they will achieve the required reliability without major redesigns.

Among the problems discovered in operational testing, the most common reason for finding these problems was the switch to operationally realistic environments and users. During developmental testing of the CV-22 Osprey, the Helmet-Mounted Display Color Display Day Module was only tested in limited environments. The switch to bright sunlight and bright urban conditions in operational testing revealed that the display module actually degraded pilots’ situational awareness under such common environments. This problem could have been found in earlier developmental testing had it been tested in operationally representative environments with bright sunlight or in bright urban conditions. In another case, during developmental testing of the AN/SQQ-89A sonar system, the highly skilled users were able to use the system to effectively detect the test torpedoes. However, the operational test revealed that with fleet-representative users this variant of the system (Advanced Capability Build (ACB)-11) did not meet performance metrics, which degrades the effectiveness of torpedo evasion. Fortunately, the Program Office has supported further operational testing and has already documented upgrades to be implemented in a future variant of the system, ACB-15. Limited developmental testing is a common reason that these problems were not discovered prior to operational testing.

Of the problems discovered in operational testing, more than two-thirds (35/49) should have been discovered in developmental testing because they did not require an operationally representative environment to make that discovery. For example, a live test shot of the Advanced Anti-Radiation Guided Missile (AARGM) system revealed flawed logic within the system in the presence of countermeasures, which caused the shot to miss the target. This stopped the operational test and delayed development. Limiting developmental testing and pushing the discovery of these problems into operational testing creates delays in the schedule and increases the costs of development.

All of the survivability problems discovered in operational testing are in the cybersecurity domain (problems discovered during LFT&E are not considered discovered in operational testing). This finding highlights the importance of finding these problems through cybersecurity testing in the operational environment, both to identify and validate cybersecurity vulnerabilities and to assess mission effects and cybersecurity defense effectiveness. Fielding systems with cybersecurity deficiencies can dramatically affect missions and we cannot assume our cybersecurity defenses are up to the task of making up for those deficiencies. Although
the details of many of these deficiencies are classified, some explanations of specific problems can be found in the individual program articles in this report.

Figure 3 further breaks down the number of significant problems per operational test by each of the Services.

The LCS systems had large numbers of problems per operational test, with 9 and 13 for the Freedom and Independence variants, respectively. These problems occurred during FY14-15 operational testing of the two variants that DOT&E reported on in FY16. LCS has continued program development in spite of these problems; of the 22 significant problems, only 2 were discovered in the operational tests. The LCS Program Office has addressed 8 of the remaining 20 known problems. Many of these problems persist because they are inherent to the LCS design; others are fixable but DOT&E is not aware of efforts to correct them. The problems that persist vary from limited fuel range to a design that lacks the redundancy included in other combatants, which could lead to the ship being abandoned in heavy combat situations.

The histograms in Figure 3 show that, in general, the Services experience similar trends in the number of problems observed while conducting operational testing. It is also noteworthy that each of the Services experienced tests with no problems; even in these cases, the operational testing was essential to confirm that users will be able to employ these systems in realistic conditions without being plagued by significant problems.

Tables 1 and 2 list the 83 operational tests discussed in this year’s Annual Report. Table 1 lists the 25 operational tests that had no significant problems, while Table 2 lists the 58 operational tests that had significant problems. Each row provides the name of the system and operational test, and indicates in which operational testing area problems were observed. For details on the problems observed, see the individual program articles in this report.
FY16 DOT&E Activity and Oversight

<table>
<thead>
<tr>
<th>System Name</th>
<th>OT Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM) (pg. 341)</td>
<td>AIM-120 Advanced Electronic Protection Improvement Program (AEPIP)</td>
</tr>
<tr>
<td>AIM-120 Electronic Protection Improvement Program (EPIIP)</td>
<td></td>
</tr>
<tr>
<td>AIMRAAM</td>
<td>AIM-120D System Improvement Program (SIP-1) OT</td>
</tr>
<tr>
<td>AN/BQQ-10 Acoustic Rapid Commercial Off-the-Shelf Insertion (A-RCI) (pg. 201)</td>
<td>AN/BQQ-10 A-RCI Advanced Processing Build 2013 (APB-13) FOT&E</td>
</tr>
<tr>
<td>Battle Control System – Fixed (pg. 351)</td>
<td>Battle Control System – Fixed R3.2.3 OT</td>
</tr>
<tr>
<td>CHEM DEMIL-ACWA - Chemical Demilitarization Program - Assembled Chemical Weapons Alternatives (pg. 145)</td>
<td>Chemical Demilitarization OT</td>
</tr>
<tr>
<td>CHEM DEMIL-ACWA</td>
<td>Explosive Destruction Technology FOT&E</td>
</tr>
<tr>
<td>Close-In Weapon System – SeaRAM Variant (pg. 209)</td>
<td>SeaRAM Early Fielding Testing</td>
</tr>
<tr>
<td>Consolidated Afloat Networks and Enterprise Services (CANES) (pg. 215)</td>
<td>CANES FOT&E</td>
</tr>
<tr>
<td>Defense Agencies Initiative (DAI) (pg. 29)</td>
<td>DAI Operational Assessment Increment 2 Release 1</td>
</tr>
<tr>
<td>DAI</td>
<td>DAI Operational Assessment Increment 2 Release 2</td>
</tr>
<tr>
<td>Defense Readiness Reporting System – Strategic (DRRS-S) (pg. 37)</td>
<td>DRRS-S IOT&E</td>
</tr>
<tr>
<td>E-2D Advanced Hawkeye (AHE) (pg. 237)</td>
<td>E-2D Delta System/Software Configuration Build 2 (DSSC-2) OT-D2</td>
</tr>
<tr>
<td>F-22A Advanced Tactical Fighter (pg. 363)</td>
<td>F-22 Update 5 FDE</td>
</tr>
<tr>
<td>Geosynchronous Space Situational Awareness Program (GSSAP) (pg. 369)</td>
<td>GSSAP IOT&E</td>
</tr>
<tr>
<td>KC-46A Tanker Replacement Program (pg. 389)</td>
<td>KC-46A OA-2</td>
</tr>
<tr>
<td>LHA 6 New Amphibious Assault Ship (pg 253)</td>
<td>LHA 6 IOT&E</td>
</tr>
<tr>
<td>Littoral Combat Ship (LCS) surface warfare (SUW) mission package on Freedom variant (pg 257)</td>
<td>OT-C1 Freedom variant LCS with Increment 2 SUW mission package</td>
</tr>
<tr>
<td>Logistics Modernization Program (LMP) (pg. 161)</td>
<td>LMP IOT&E</td>
</tr>
<tr>
<td>Massive Ordnance Penetrator (MOP) (pg. 389)</td>
<td>MOP Enhanced Threat Reduction Phase 3 (ETR-3) Quick Reaction Assessment</td>
</tr>
<tr>
<td>Miniature Air-Launched Decoy (MALD) and MALD – Jammer (MALD-J) (pg. 391)</td>
<td>MALD-J FDE</td>
</tr>
<tr>
<td>MV-22 Osprey (pg. 299)</td>
<td>MV-22 OT-IiK Phase 2</td>
</tr>
<tr>
<td>Next Generation Jammer (NGJ) Increment One (pg. 301)</td>
<td>NGJ Increment 1 EOA</td>
</tr>
<tr>
<td>RQ-4B Global Hawk Block 40 (pg. 399)</td>
<td>RQ-4B Global Hawk Block 40 IOT&E</td>
</tr>
<tr>
<td>SSN 774 Virginia Class Submarine (pg. 321)</td>
<td>Virginia Class Block III FOT&E</td>
</tr>
</tbody>
</table>

EOA – Early Operational Test
FDE – Force Development Evaluation
FOT&E – Follow-on Operational Test and Evaluation
IOT&E – Initial Operational Test and Evaluation
OA – Operational Assessment
OT – Operational Test
<table>
<thead>
<tr>
<th>System Name</th>
<th>Operational Test</th>
<th>Effectiveness</th>
<th>Suitability</th>
<th>Survivability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-130J Gunship (pg. 337)</td>
<td>AC-130J Block 10 OUE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aegis Ballistic Missile Defense (Aegis BMD) (pg. 413)</td>
<td>Flight Test Operational-02 (FTO-02)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aegis Modernization Program (pg. 187)</td>
<td>Aegis Baseline Upgrade OT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AGM-88E Advanced Anti-Radiation Guided Missile (AARGM) (pg. 191)</td>
<td>AARGM Block 1 FOT&E</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Air Force Distributed Common Ground System (AF DCGS) (pg. 343)</td>
<td>AF DCGS Geospatial Intelligence Baseline (GB) 4.1 FDE Phases 2 and 3 and GEDINT Workflow Enhancement (GWE) OUE Phase 1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AF DCGS</td>
<td>AF DCGS Systems Release (SR) 3.0 OUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOC-WS 10.0 & 10.1</td>
<td>AOC-WS 10.1 OOC 13.2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN/BLQ-10 Submarine Electronics Support Warfare Measures (pg. 199)</td>
<td>Technical Insertion 10 (TI-10) FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AN/SQQ-89A(V)15 Integrated Undersea Warfare (USW) Combat System Suite (pg. 203)</td>
<td>AN/SQQ-89A(V)15 Advanced Capability Build 2011 (ACB-11) FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APR-39 D(V)2 (pg. 197)</td>
<td>Army APR-39 D(V)2 FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Army Integrated Air and Missile Defense (AIAMD) (pg. 143)</td>
<td>AIAMD LUT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ballistic Missile Defense System (BMDS) (pg. 405)</td>
<td>Flight Test Operational (FTO) -02</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BMDS Sensors / Command and Control (pg. 409)</td>
<td>FTO -02</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biometrics (pg. 171)</td>
<td>Near Real Time Identity Operations (NRTIO) OA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Command Web (pg. 147)</td>
<td>Command Web LUT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Aviation Command and Control System (CAC2S) (pg. 211)</td>
<td>CAC2S IOT&E</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cooperative Engagement Capability (CEC) (pg. 217)</td>
<td>CEC FOT&E</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV-22 Osprey (pg. 353)</td>
<td>CV-22 OT on the Tactical Software Suite</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier (pg. 219)</td>
<td>OT-B4 OA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Defense Enterprise Accounting and Management System (DEAMS) (pg. 355)</td>
<td>DEAMS Verification of Fixes</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Defense Medical Information Exchange (DMIX) (pg. 33)</td>
<td>MOT&E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of the Navy Large Aircraft Infrared Countermeasures (DON LAIRCM) Advanced Threat Warning System (pg 233)</td>
<td>DON LAIRCM FOT&E on the CH-53</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed Common Ground System – Army (DCGS-A) (pg. 149)</td>
<td>FOT&E</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Distributed Common Ground System – Navy (DCGS-N) (pg. 235)</td>
<td>Increment 1, Block 2 FOT&E</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Expeditionary Transfer Dock and Expeditionary Mobile Base (pg. 239)</td>
<td>Expeditionary Sea Base Class ship IOT&E</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Global Broadcast Service (GBS) (pg. 371)</td>
<td>GBS FOT&E-1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Global Command and Control System – Joint (GCCS-J) (pg. 107)</td>
<td>GCCS-J v4.3 Update 1 Emergency Release 1 Cooperative Vulnerability and Penetration Assessment and Adversarial Assessment</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GCCS-J</td>
<td>GCCS-J Global v6.0 and Agile Client Release 7, v5.1.0.1 OA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GCCS-J</td>
<td>GCCS-J Joint Operation Planning and Execution System (JOPES) 4.2.0.4 OT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ground-based Midcourse Defense (GMD) (pg. 419)</td>
<td>GMD Control Test Vehicle-02+ (CTV-02+)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Infrared Search and Track (IRST) (pg. 247)</td>
<td>F/A-18 Block I Operational Assessment 2 (OA-2)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Integrated Defensive Electronic Countermeasures (ID ECM) (pg. 249)</td>
<td>IDECM Integrated DT/OT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
There are 79 programs that have operational tests scheduled to begin in the next two fiscal years, and I am aware of significant problems that, if not corrected, could adversely affect my evaluation of the effectiveness, suitability, or survivability of 45 of these systems. Table 3 lists the upcoming operational tests for systems discussed in this year's Annual Report (see individual program articles in this report for details on the problems). Table 4 lists the upcoming operational tests for systems that do not have entries in this year's report. For these systems, brief descriptions of the problems are provided after the table.
FY16 DOT&E Activity and Oversight

Table 3. Programs in this Annual Report with Problems That May Adversely Affect Upcoming Operational Testing

<table>
<thead>
<tr>
<th>System Name</th>
<th>Upcoming Test</th>
<th>Effectiveness</th>
<th>Suitability</th>
<th>Survivability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-130J Gunship (pg. 337)</td>
<td>AC-130J IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aegis Ballistic Missile Defense (Aegis BMD) (pg.413)</td>
<td>Flight Test Operational-03 (FTO-03)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AH-64E Apache (pg. 141)</td>
<td>AH-64E Apache (Version 6) IOT&E</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Air Force Distributed Common Ground System (AF DCGS) (pg. 343)</td>
<td>AF DCGS Systems Release (SR) 3.0.1 IOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOC-WS 10.2</td>
<td>AOC-WS 10.2 OA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Airborne Warning and Control System (AWACS) (pg.359)</td>
<td>E-3 AWACS Block 40/45 FOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AN/SQQ-89A(V)15 Integrated Undersea Warfare (USW) Combat System Suite (pg.203)</td>
<td>AN/SQQ-89A(V)15 Advanced Capability Build 2011 (ACB-11) FOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APR-39 D(V)2 (pg. 197)</td>
<td>Army APR-39 D(V) 2 FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Army Integrated Air and Missile Defense (AIAMD) (pg. 143)</td>
<td>AIAMD OA for Milestone C Decision</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ballistic Missile Defense System (BMDS) (pg. 405)</td>
<td>Flight Test Operational-03 (FTO-03)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CH-53K (pg. 205)</td>
<td>CH-53K OT-B1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Coastal Battlefield Reconnaissance and Analysis (COBRA) Block I (pg. 257) (LCS)</td>
<td>COBRA Block I Phase I IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Command and Control, Battle Management, and Communications (C2BMC) (pg. 409)</td>
<td>Flight Test Operational-03 (FTO-03)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cooperative Engagement Capability (CEC) (pg. 217)</td>
<td>CEC FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Defense Enterprise Accounting and Management System (DEAMS) (pg. 355)</td>
<td>DEAMS FOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Defense Medical Information Exchange (DMIX) (pg. 33)</td>
<td>DHMSM IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Defense Healthcare Management System Modernization (DHMSM) (pg. 43)</td>
<td>DHMSM IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F-22A Advanced Tactical Fighter (pg. 363)</td>
<td>F-22A Increment 3.2B IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F-35 Lightning II Joint Strike Fighter (JSF) (pg. 47)</td>
<td>JSF Block 3F IOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F/A-18 E/F Super Hornet Naval Strike Fighter and EA-18G Airborne Electronic Attack (pg. 243)</td>
<td>H12 OT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Family of Advanced Beyond Line of Sight Terminal (FAB-T) (pg. 367)</td>
<td>FAB-T Command Post Terminal (CPT) IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Geosynchronous Space Situational Awareness Program (GSSAPI) (pg. 369)</td>
<td>FOT&E 1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Global Command and Control System – Joint (GCCS-J) (pg. 107)</td>
<td>GCCS-J Global OA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Global Positioning System (GPS) Enterprise (pg. 375)</td>
<td>Military GPS User Equipment (MGUE) Increment 1 OA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground-based Midcourse Defense (GMD) (pg. 419)</td>
<td>Flight Test GMD-15 (FTG-15)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Integrated Defensive Electronic Countermeasures (IDECM) (pg. 249)</td>
<td>IDECM Software Improvement Program (SWIP) FOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Joint Information Environment (JIE) (pg. 111)</td>
<td>JIE OA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Joint Space Operations Center Mission System (JMS) (pg. 381)</td>
<td>JMS Increment 2, Service Pack 9 OUE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Warning and Reporting Network (JWARN) (pg. 115)</td>
<td>JWARN Increment 2 Requirements Definition Package (REDP) 2 Capability Drop 2.1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A (pg. 385)</td>
<td>KC-46A IOT&E</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Management Infrastructure (KMI) (pg. 117)</td>
<td>Spiral 2, Spin 2 OA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M109A7 Paladin Integrated Management (PIM) (pg. 165)</td>
<td>M109A7 PIM IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MQ-4C Triton Unmanned Aircraft System (UAS) (pg. 293)</td>
<td>MQ-4C Early Fielding Evaluation for Integrated Functional Capability (IFC) 3.1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Generation Diagnostic System (NGDS) (pg. 121)</td>
<td>NGDS MOT&E</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-8A Poseidon Multi-Mission Aircraft (MMA) (pg. 303)</td>
<td>P-8A Increment 2 Engineering Change Proposal 2 (ECP-2)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patriot Advanced Capability-3 (PAC-3) (pg. 173)</td>
<td>Patriot Post-Deployment Build-8 and Missile Segment Enhancement IOT&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spider (pg. 181)</td>
<td>Spider II A IOT&E</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Mine Countermeasures Unmanned Undersea Vehicle (SMCM UUV) (pg. 257)</td>
<td>Knifefish OA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Ship Torpedo Defense (SSTDD) Torpedo Waming System (TWS) Countermeasure Anti-Torpedo (CAT) (pg. 329)</td>
<td>QRA and Early Fielding Report Update</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRESS UPDATES ON PROBLEMS REPORTED IN THE FY15 ANNUAL REPORT

In my annual report last year, I identified 8 systems that discovered only new problems, 19 systems that discovered new problems and re-observed known problems, and 18 systems that only re-observed known problems during operational testing in FY15. The status of these 45 programs is listed below.

All fixes implemented and verified in OT (6/45)
- Acoustic Rapid Commercial Off-the-Shelf Insertion (A-RCI) for AN/BQQ-10(V) Sonar
- F-22A Advanced Tactical Fighter
- LHA 6 New Amphibious Assault Ship
- Miniature Air-Launched Decoy – Jammer (MALD-J)
- Mobile Landing Platform (MLP) Core Capability Set (CCS) (Expeditionary Transfer Dock) and Afloat Forward Staging Base (AFSB) (Expeditionary Mobile Base)
- MV-22 Osprey

Some (or all) fixes implemented but new problems discovered or known problems re-observed in OT (21/45)
- AC-130J Ghostrider
- Aegis Modernization Program
- Air Force Distributed Common Ground System (AF DCGS)
- AN/SQQ-89A(V)15 Integrated Undersea Warfare (USW) Combat System Suite
- Air Operations Center – Weapon System (AOC-WS) 10.0 & 10.1
- Ballistic Missile Defense System (BMDS)
FY16 DOT&E Activity and Oversight

- CV-22 Osprey
- CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier
- Defense Enterprise Accounting and Management System (DEAMS)
- Defense Medical Information Exchange (DMIX)
- Department of the Navy Large Aircraft Infrared Countermeasures (DON LAIRCM)
- Global Command and Control System – Joint (GCCS-J)
- Integrated Defensive Electronic Countermeasures (IDECM)
- Infrared Search and Track (IRST)
- Joint Warning and Reporting Network (JWARN)
- Littoral Combat Ship (LCS) Freedom Class
- LCS Independence Class
- Mid-Tier Networking Vehicular Radio (MNVR)
- P-8A Poseidon Multi-Mission Maritime Aircraft (MMA)
- Surface Electronic Warfare Improvement Program (SEWIP) Block 2
- Warfighter Information Network – Tactical (WIN-T)

Some fixes (potentially) implemented; currently in OT or planning additional OT (10/45)
- Countermeasure Anti-Torpedo (CAT)
- F/A-18E/F Super Hornet
- Family of Advanced Beyond Line-of-Sight Terminals (FAB-T)
- Guided Multiple Launch Rocket System – Alternate Warhead (GMLRS-AW)
- Key Management Infrastructure (KMI) Increment 2
- MQ-1C Unmanned Aircraft System (UAS) Gray Eagle
- Q-53 Counterfire Target Acquisition Radar System
- Ship Self-Defense System (SSDS)
- Torpedo Warning System (TWS)
- Virginia Class Block III Submarine

No fixes planned, or no fixes planned to be tested in the next two years (8/45)
- AIM-9X Air-to-Air Missile Upgrade
- Airborne Mine Neutralization System (AMNS)
- Integrated Personnel and Pay System – Army (IPPS-A)
- Global Combat Support System – Marine Corps (GCSS-MC)
- H-1 Upgrades to AH-1Z Attack Helicopter and UH-1Y Utility Helicopter
- Joint High Speed Vessel (JHSV)
- MH-60R Multi-Mission Helicopter
- Surveillance Towed Array Sensor System (SURTASS) and Compact Low Frequency Active (CLFA) Sonar

In FY15, I also identified 48 systems that had significant problems in early testing that should be corrected before operational testing. The following provides an update on the progress these systems made in implementing fixes to those problems.

Fixes verified in OT - No other problems observed (2/48)
- Acoustic Rapid Commercial Off-the-Shelf Insertion (A-RCI) for AN/BQQ-10(V) Sonar
- F-22A Advanced Tactical Fighter

Fixes verified in OT - New problems observed (2/48)
- Defense Medical Information Exchange (DMIX)
- P-8A Poseidon Multi-Mission Maritime Aircraft (MMA)

Fixes verified in OT - Known problems re-discovered (8/48)
- AN/BLQ-10 Submarine Electronic Support System
- Defense Enterprise Accounting and Management System (DEAMS)
- Department of the Navy Large Infrared Countermeasures (DON LAIRCM)
- Infrared Search and Track (IRST)
- Mid-Tier Networking Vehicular Radio (MNVR)
- MQ-4C Triton Unmanned Aircraft System (UAS)
- Mobile User Objective System (MUOS)
- Surface Electronic Warfare Improvement Program (SEWIP) Block 2
Fixes tested in OT - Both new problems discovered and known problems re-observed (11/48)

- AC-130J Ghostrider
- Aegis Modernization
- Air Force Distributed Common Ground System (AF DCGS)
- AGM-88E Advanced Anti-Radiation Guided Missile (AARGM)
- AN/SQQ-89A(V) Integrated Undersea Warfare (USW) Combat Systems Suite
- CV-22 Osprey
- Global Command and Control System – Joint (GCCS-J)
- Integrated Defensive Electronic Countermeasures (IDECM)
- Littoral Combat Ship (LCS) Independence Class
- MQ-9 Reaper Armed Unmanned Aircraft System (UAS)
- Warfighter Information Network – Tactical (WIN-T)

Fixes not planned to be tested in the next two years (10/48)

- Airborne Laser Mine Detection System (ALMDS)
- Airborne Mine Neutralization System (AMNS)
- Air Operations Center – Weapon System (AOC-WS) 10.2
- DOD Automated Biometric Identification System (ABIS)
- Mark XIIA Mode 5 Identification Friend or Foe (IFF)
- Integrated Personnel and Pay System – Army (IPPS-A) Increment II
- Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS)
- Joint Battle Command – Platform
- MK 54 Lightweight Torpedo
- Remote Minehunting System (RMS)

Fixes currently being tested or planned to be tested in the next two years (15/48)

- AH-64E
- Ballistic Missile Defense System (BMDS)
- CH-53K Heavy Lift Replacement Program
- Coastal Battlefield Reconnaissance and Analysis (COBRA) Block I
- Countermeasure Anti-Torpedo (CAT)
- F/A-18E/F Super Hornet
- Family of Advanced Beyond Line-of-Sight Terminals (FAB-T)
- Key Management Infrastructure (KMI)
- Military GPS User Equipment (MGUE)
- Nett Warrior
- GPS Next Generation Operational Control System (OCX)
- Patriot Advanced Capability-3 (PAC-3)
- Torpedo Warning System (TWS)
- Virginia Class Block III Submarine
- XM25 Tactical Increment 2 XM 25 Counter Defilade Target Engagement System (CDTE)
Introduction
DOT&E oversees operational testing of 30 DOD Major Automated Information Systems (MAIS) programs. Many MAIS program managers find it challenging to meet cost, schedule, and performance goals. The U.S. Government Accountability Office (GAO) reported in 2014 that, “most selected [MAIS] programs changed their planned cost and schedule estimates, and over half did not fully meet system performance targets.” The same report stated that of the 15 MAIS programs the GAO studied, “three of the selected programs reported meeting system performance targets, while eight reported not fully meeting targets, and four did not have system performance data available.” All of the 15 programs that GAO reviewed are on the DOT&E oversight list, and DOT&E has gained unique insights into MAIS programs through operational testing.

The purpose of this section is to identify best practices in MAIS acquisition and provide examples of how those were implemented by the systems under DOT&E oversight. The DOD acquisition workforce has sporadically implemented many of the best practices for MAIS programs. A wider, more consistent application of the best practices described in this section, including implementation of an agile acquisition framework, should help DOD more frequently deliver successful MAIS programs that perform well during operational testing and in the field.

Challenges
The challenging nature of MAIS acquisition can be attributed to many factors, but software acquisition reference materials often cite complexity and unstable requirements as the most significant.

- Program complexity. DOD MAIS programs tend to be very complex. Typical MAIS programs have to be integrated into multiple existing enterprises that contain large numbers of interfaces with government and commercial entities, each with its own configuration, database structure, and security requirements. In addition, the program itself most often is an integration of large numbers of commercial off-the-shelf (COTS) and government off-the-shelf (GOTS) components with existing military and commercial networks. This complexity is often paired with an acquisition strategy that requires delivery of a full, mature product in a single development cycle, which often results in delays and performance shortfalls.
- Unstable requirements. DOD systems often have to deal with changing requirements. In many cases, the changes are driven by advancement in technology (e.g., vendors updating hardware, operating system, or database versions) and the program office must either pay sharply increased costs to continue the support or move to the new version with associated changes. At other times, world events and doctrine changes drive the requirements to change (e.g., a system that was intended for use in conventional warfare may need new functions to be used in counterinsurgency warfare). In either case, changes in requirements necessitate changes in software, causing disruptions in the development cycle.

Best Practices
These challenges may be mitigated through MAIS program best practices. In the process of overseeing the operational testing of systems under DOT&E oversight, DOT&E noted the following 10 practices that produced observable benefits to the programs.

Robust Senior-Level Participation
Robust and continued senior-level attention and participation contributed significantly to the success of agile acquisition MAIS programs like the Army’s Logistics Modernization Program (LMP), Global Combat Support System – Army (GCSS-A), and GCSS – Joint (GCSS J). Senior leader support was key for securing necessary resources, enforcing updated business processes, and shortening decision cycles.
- Resource help. Agile programs tend to have relatively short delivery cycles. This often means short development-test-deployment cycles. Executing such agile cycles is resource-intensive for the entire acquisition team. A typical agile program deploys an approved release, develops the current release, and plans for the next release, all at the same time. To support such concurrent acquisition cycles, testers must simultaneously prepare evaluation reports from the last release, execute and witness test events for the current release, and plans for the next release, all at the same time. One test team usually cannot adequately plan test, and report simultaneously. To reduce the burden, the GCSS-J Program Office provided sufficient resources to form two

1 Section 2445a of title 10, U.S. Code, defines a MAIS program as a DOD information technology (IT) investment with: 1) program costs in any single year exceeding $32 Million; 2) total program acquisition costs exceeding $126 Million; or 3) total life-cycle costs exceeding $378 Million (all in FY00 constant dollars). DOD Instruction (DODI) 5000.02, “Operation of the Defense Acquisition System,” dated January 7, 2015, updates the dollar figures to FY14 constant dollars: 1) $40 Million in any single year, 2) $165 Million total program cost, or 3) $520 Million total life-cycle cost. The Secretary of Defense and the Milestone Decision Authority can also use discretion to designate a program as a MAIS.
test teams so that each team could alternate and focus on one release at a time.

- Enforcement of updated business processes. Users tend to be comfortable with the business processes or tactics, techniques, and procedures (TTPs) they have been using. Unfortunately, new TTPs and business processes are inevitable with significantly new capabilities for a couple of reasons. First, new software often will not support established business processes and TTPs without customization, and the risk in a MAIS program tends to correspond to the amount of customization. Customization can cause deviation from the initial design of the COTS and GOTS software. Such a change necessitates not only new code writing, but also may change the way the software interfaces with other systems or modules. Second, the use of outdated business processes and TTPs increases the risk of not using the new software to its maximum value. The advantages of automation are eliminating manual steps and reducing human decision points. Some users might resist such automation, but avoiding automation can negate the benefit of the new technology.

Thus, once decision-makers agree there is a need to change TTPs and business practices, they must help implement them by enforcing their use and providing the necessary resources for training. The Army’s LMP performed well during its recent operational test in part because of the rigorous user training the program manager provided well prior to the test.

- Shortened decision cycles. The acquisition process for MAIS programs require OSD-level decisions, which can often mean lengthy staffing processes. This is very difficult for programs that deploy more than one release per year. Many programs successfully developed a model where they adequately informed decision-makers without lengthy staffing processes. One such method is simultaneous staffing of acquisition decisions vice a step-by-step iteration of signature process. This method is not always practical, but can work well if senior-level leaders participate in the acquisition. For instance, LMP Increment 2 grouped seven releases into three waves. Each wave grouped one to three releases based on a risk assessment. The acquisition decision makers made production and fielding decisions for waves rather than individual releases. This way, decision makers still managed risks without excessive, time-consuming staffing processes.

Flexible and Disciplined Requirements Management

Program sponsors for the majority of MAIS programs document their requirements with the Joint Capabilities Integration Development System “IT Box” model. With the IT Box, requirements are specified in an Information System Initial Capability Document (IS ICD) and Information System Capability Development Document (IS CDD). The program sponsors describe more details of the IS ICD and IS CDD requirements in Requirements Definition Packages and further define the capability for each release in Capability Drops.

One advantage of agile acquisition and the IT Box is the flexibility to adjust the priority and urgency of requirements. Program sponsors document requirements at the beginning of the acquisition program when the software developers and users know only a rough outline of the program. As the system matures, users and developers might realize some of the requirements are not consistent with the best use of the system’s capabilities. The threats or the doctrine may change, and in response, the program may need to develop a capability earlier than originally planned. A software module might encounter significant challenges that could ultimately influence the acquisition timeline. In such cases, the IT Box provides the requirement governance body with the authority to decide whether to leave that capability for a future release, or to add resources to complete that capability.

Many MAIS programs implement commercially available agile framework products. Most agile frameworks state requirements in terms of user stories, which are a small segment of functionality that a user wants. The capability to execute a user story is delivered in a sprint, or a small segment of software. The user stories are combined into an epic, which is a larger description of how the user intends to use the system. The capability to execute the epic is delivered in a release composed of multiple sprints.

Compared with typical requirements in a system specification such as “system ABC must be able to perform XXX task within YY seconds,” epics and user stories provide a more operational context such as “the user must be able to receive X input and produce Y product in time to support Z task.” The user story not only provides performance goals for each task, but also provides operational context of how those tasks work together to produce a desired outcome.

A user story allows the program sponsor to frame a feature in terms of its benefits for a particular user. A well-written user story helps developers design software that delivers specific benefits. A pitfall a program can easily fall into is breaking epics into tasks rather than user stories. In those cases, development and testing processes becomes task-focused (doing things) instead of delivery-focused (creating value). For a coherent and consistent understanding of requirements in operationally relevant terms, it is important to describe requirements in terms of value to the user rather than tasks; e.g., a user story should be, “user must update unit location before the next planning update cycle,” rather than, “user must be able to update the unit location in less than 4 seconds.” This way, developers and testers can both understand the importance and operational consequence of each step.

3 | Manual for the Operation of the Joint Capabilities Integration and Development System (JCIDS), February 12, 2015, page D-29
4 | Ibid., page D-34 and figure D-4
5 | Defense Acquisition University (https://dap.dau.mil/glossary/Pages/2752.aspx) defines system specification as “a description of the system-level requirements, constraints, and interfaces (functional, performance, and design) and the qualification conditions and procedures for their testing and acceptance. The System Specification, initially reviewed at the System Requirements Review (SRR), ultimately becomes part of the functional baseline that is confirmed at the completion of the System Functional Review (SFR).”
For the Distributed Common Ground System – Army (DCGS-A) FOT&E, DOT&E evaluated the system primarily based on the user’s ability to execute “vignettes” – a series of user actions that accomplishes the mission. For instance, one of the vignettes required the brigade equipped with DCGS-A to identify a facility that manufactured IEDs, and locate and designate the facility to be targeted. The Army program sponsors developed 10 such vignettes for FOT&E. The program sponsor, in concert with combat developers and the brigade, further divided the vignettes into steps for specific DCGS-A users.

Change Management that Starts Early and Continues Throughout the Process

Military users cannot always adapt to commercial practices. In such cases, the program office should work closely with the users to refine business processes. For example, the GCSS – Marine Corps (GCSS-MC) Program Office spent many months with system designers and tactical users, exchanging ideas and designing new business processes that retained the power of new software while accommodating specific military requirements such as limited bandwidth on the move, limited ability to carry heavy hardware, and unit personnel changing over with military rotations. The process was iterative; approved procedures did not always work out the way users and engineers expected. In such cases, users and engineers needed to return to business processes and software to accommodate the military missions.

After deploying the new software, the GCSS-MC Program Office fielding team worked extensively with users during the fielding process so that individual adjustments could be made for specific users. Similarly, another program, GCSS-J, coordinated early with the users to describe their workflow in terms of user stories, and continued dialog with the users after fielding to make requested changes. Such adjustments can be as simple as redesigning the look of the display and writing patches to adapt the software. In some cases, extensive adjustments ended up as a new function to be delivered in the next available software drop, pending approval by decision-makers.

Architecture Description in Accordance with the DOD Architectural Framework

A well-designed and sufficiently detailed architecture is a prerequisite for effective development and employment of enterprise software. This is no different than needing a detailed blueprint for a building before construction and for maintenance. The more complex a program is, the more the developer and maintainers need the architecture description. The DOD architectural framework provides an outline for documenting the architecture.

Sufficiently detailed workflow information (as provided in the system view and operational view architectural products) should be coordinated with users to develop user procedures and training. Such coordination allows discussion regarding how the system can be integrated into user’s doctrine and procedures, or to modify the doctrine, procedures, and user training to take advantage of the technology.

During the development and sustainment phases, the program office should update architectural products to ensure consistency with user procedures and updated interfacing systems. The updated architecture should also remain consistent with user stories that describe the updated procedures and interfaces.

Mature Doctrine and Training Development

It is easy to fall into the trap of mistaking the purchase of tools with providing solution to a problem. In reality, tools do not help the user unless users know how to use the tools to accomplish the mission. For DOD systems, successful programs tend to have doctrine that describes how the system fits into the overall military operations. The doctrine in turn becomes the basis of developing TTPs that describes in more detail how the users should employ the functions the system provides. The doctrine and TTPs then should be integrated into a training program so that users have necessary knowledge to operate and maintain the system.

• TTPs. While the program manager should make the transition to a new MAIS program as seamless as possible, the reality of automation and optimization can demand change in the way the military does things. For instance, whereas the old process may have been to place an order for a part first and have the financial office check that order against available funds second, the new software may pre-check the funds balance as a part of processing the order. To take advantage of new capabilities, system sponsors and users must develop and train doctrine and TTPs. GCSS-A incrementally fielded capability with sufficient time to develop the TTPs so that the users received systems with clear instructions on how to use the system to accomplish the mission.

• Training. User training for new system capabilities should include not only how to do an individual task, but also how to work with the new capabilities as a team. The training must include sufficient practice sessions to get used to new TTPs and for each unit to develop its own operating procedures. The DCGS-A Program Manager dedicated almost a year to gradually increasing the scope of training, starting with individual training and culminating in a brigade free-play training exercise.

Iterative Developmental Tests that Start Early

MAIS programs typically have one prime vendor that integrates hardware and software components from multiple vendors. The program office should have a coherent strategy to find and fix problems as each software component is developed and delivered, because software engineers can find and fix problems more quickly before a software module is integrated into a larger and more complex program. Isolating the root causes of a problem can be very difficult after the software has been nested with other vendors’ products. In addition, the prime vendor may have to redo the integration work after receiving an updated software module.

Database Interfaces and Commonality

MAIS programs typically ingest data from multiple sources to produce new database products. If data sources provide inaccurate data, the resulting product will be inaccurate. The program may not be able to ingest the data if a data source provides data in a different format. To minimize such risks, the
LMP Program Management Office (PMO) conducted trading partner test (TPT) as well as process and data integrations test (PDIT) events before government developmental test (DT) and operational test (OT) events. The TPT ensured interfaces with trading partner systems worked as intended, and the PDIT ensured that the end-to-end processes worked well. Many programs do adequate interface tests that are similar to a TPT, but they neglect to test an entire process as done in the PDIT. An early test of process and data in a controlled environment makes it much easier to identify and fix root causes of any discrepancies. The TPTs and PDITs provided the LMP PMO early opportunities to discover shortfalls and implement necessary adjustments.

The LMP PMO put management focus on data integration. Conducting PDITs before DT and OT events helped ensure LMP was ready to ingest and use accurate data from the data sources. The PDITs helped LMP avoid one of the most common causes for logistics system failures: nomenclature inconsistencies. For instance, when a user needs to know how many M1A1 tanks are in the unit’s inventory, the database should be capable of counting all M1A1s. Unfortunately, one database may call it M1A1; another database may call it Abrams Tank; and another database may call it “tank, main battle, armored.” Even worse, some databases may track the data at the component level (such as engine, transmission, or gun mounts) rather than the platform level such as M1A1. Given the variety of source databases, the LMP database manager had to first correlate all of these terms with a common term before the system could return an accurate count for the query. Even when the database manager succeeds in this difficult task, if the database manager is not careful, a query for “Abrams tank” may count all of the M1A2s as well as M1A1s. If the intent was to count M1A1s, the count would be wrong. The database manager must find a way to work with all of the existing databases and either build interfaces or modify databases. LMP managed this challenge by conducting well-designed, two way data integration tests to identify and fix the interface issues.

DCGS-A is an intelligence system that exploits intelligence, surveillance, and reconnaissance data to produce actionable intelligence. The system accomplishes this through an intelligence fusion process that combines information from a large number of sources. The fused intelligence can only be as good as the accuracy of the data it uses. The Army quickly found that synchronizing databases is a daunting challenge and created the Tactical Entity Database (TED) that combines and organizes data from hundreds of sources into specific entities. An entity may be a person, building, organization, or equipment. By organizing large and disparate information into a coherent database, information can be correlated and associated so that an analyst can get a clear picture of what is in the unit’s area of responsibility.

Even after the creation of TED, DCGS-A had more database challenges to overcome. In unconventional warfare, the database has to record many items that do not have standard nomenclatures, or item names. An example is a brand new type of IED. For some purposes, such as route planning, the unit would find it more useful to group all such devices as IEDs. For other intelligence purposes, the unit may need to identify specific types of IED, and must create a new item description to document that type of IED. The new nomenclature needs to be designed so that DCGS-A can still recognize it as an IED when a user queries for total number of IEDs. In addition, the creator of the new nomenclature must ensure all other DCGS-A users are aware of such item description. The Army conducted extensive unit-level training to define and teach when to create new nomenclature, how to create the nomenclature, and how to share the new nomenclature with other users.

DCGS-A followed the intelligence fusion process that begins with the fusion level 0, or “Normalization,” step. Normalization is the process where DCGS-A users enter data from multiple sources into TED. If a soldier reported seeing a truck with a machine gun mounted in the back, the data entry person would first look to see if such an item is on the pull-down menu. If not, the data entry person must decide whether to create a new item or call it the most similar item such as armored personnel carrier with machine gun. This step determines the value and accuracy of all processes that follow.

DOT&E evaluated DCGS-A to be not operationally effective after the IOT&E in 2012, but evaluated the system to be operationally effective after the FOT&E in 2015. Many factors contributed to the difference, but one of the most significant improvements was TED. A major contributing factor was that the Army conducted a series of extensive training events, including unit-level training, so that the unit was able to develop and train with detailed procedures and processes.

Database accuracy and currency cannot rely on software solutions alone. Proper data integration and interfaces tend to be the most accurate predictors of program success for networked MAIS systems. Accordingly, program managers should first identify and document all database and interface requirements in architectural products, monitor progress via interface and data integration tests, and implement procedures and training programs to ensure users maintain the databases properly.

A Robust Developmental Test with Operationally Representative Interfaces and Networks

Automated developmental testing is critical to gain efficiency and accuracy. Automated acceptance and regression tests provide an efficient and reliable option to verify that a code change works as intended without breaking anything. However, program offices must avoid using automated testing as a replacement for a comprehensive DT. Automated testing is a prerequisite step to make sure coding is done correctly; it is not a validation of the software’s ability to support the user’s mission.

Many complex MAIS programs perform well in DT and fail to perform in OT. Two contributing factors cover the majority of the difficulties seen during OT:

- Network connectivity and congestion. Most DT labs use a hardwired network with unlimited bandwidth, but during OT the system uses a tactical network with limited bandwidth. The limitations can cause the network to time-out, resulting
in a system failure. DT labs should emulate the expected operational networks as accurately as possible and simulate tactical network bandwidth, connectivity, and congestion.

- Interfacing systems. Each of the interfacing systems may have peculiarities which are not well understood during DT. Operational interfaces may have software patches to compensate for problems experienced during operation and thus work differently from the initial design. These differences might be enough to cause the system under test to fail to support the user’s mission. DT labs should have the latest versions of the key interfacing systems and use as much operationally realistic data as possible.

Persistent Maintenance of the Cybersecurity Plan of Actions and Milestones

An enterprise network requires MAIS programs to interface with multiple outside programs, which often include commercial systems. Allowing such connections is inherently risky from a cybersecurity perspective, and often makes it impossible to eliminate all vulnerabilities. Thus, it is important to identify, document, and continue to monitor those risks. A cybersecurity Plan of Actions and Milestones (POA&M) is the best tool to identify and document cybersecurity vulnerabilities and the mitigations for them. The POA&M should clearly identify all of the vulnerabilities by priority and urgency, the proposed corrective actions, responsible organization and person, and the milestone to achieve correction. It should include vulnerabilities associated with interfacing systems, and should not be a document that is approved once and put away; the threats are dynamic, as are the network environments.

Continual awareness of emerging cybersecurity threats, realistic adversarial testing of the system against those threats, and implementing mitigations for vulnerabilities should be an ongoing process supported by decision-makers with the authority to require corrective actions. With appropriate leadership’s focus, MAIS programs with extensive cybersecurity vulnerabilities have successfully resolved them. For example, the Navy’s Consolidated Afloat Networks and Enterprise Services (CANES) program had hundreds of significant cybersecurity vulnerabilities as it entered into IOT&E, but successfully tracked and fixed a sufficient number of them to be more secure against cyberattacks. The CANES program will have to continue to maintain its POA&M to discover and fix cybersecurity vulnerabilities as the threats and the network continue to evolve.

Thorough Tracking of Software Problems in a Comprehensive Database and Senior-Level Review of Priorities

Agile development requires decision-makers to quickly modify the priority and urgency of functions from one release to another. For the decision-makers to make an informed decision on a short decision cycle, they need to understand the development status and challenges. Even within the release cycle, decision-makers may have to change the amount of resources devoted to a particular function. Therefore, the decision-makers need to know the number of open software problems by criticality and urgency, as well as the time and resources needed to resolve software deficiencies. If correcting a problem requires a long time and interferes with the fielding schedule, decision-makers should consider mission impact against the time and resources required to fix problems. This will help to decide whether to defer the delivery to the next release or rearrange resources to more quickly solve the problem. Both GCSS-A and LMP have good processes for senior-level Army leaders to review and prioritize fixes to software problems based on user input.

Implementing Best Practices through Agile Acquisition

The best practices identified in this report can help to improve the success of MAIS programs and should be applied broadly. In order to maximize the effectiveness of these practices, DOD should pursue the agile acquisition approach. Incremental software delivery is one aspect of agile acquisition and has already been implemented with some success. However, DOD can do more to accommodate agile software development. Using proven commercial agile frameworks is a good way to systematically integrate the best practices.

Incremental Software Delivery and Agile Acquisition

To overcome challenges associated with program complexity and requirements instability, DODI 5000.02 includes an acquisition model suitable for incremental software delivery. Compared to a traditional “waterfall” model, where all of the functions are developed and delivered in one lengthy and monolithic acquisition cycle, incremental delivery allows each increment to focus on a selected set of functions, which reduces complexity. In addition, each increment takes a shorter time, and thus reduces the chance of requirement changes.

In a 2015 report, the GAO claimed:

> About half of the [selected 20 MAIS] programs that met or planned to meet this condition had been positioned to do so because they had been restructured and split into smaller, incremental programs, which is consistent with a Defense Science Board recommendation, Office of Management and Budget (OMB) guidance, and a statutory requirement to use incremental contracting to the maximum extent practicable for major IT acquisitions.7

However, working on multiple software releases, which often overlap, brings its own set of challenges – including difficult coordination among the key stakeholders and increases in redundancies and resource requirements. To help overcome these challenges, many MAIS programs adopted agile acquisition.

Agile acquisition (also known as agile software development) is an approach to software development that is built around a set of guiding principles established by the nonprofit Agile Alliance. This approach’s practices and methods are in large part intended to improve efficiency, responsiveness to changing needs, and quality. Essential elements of agile acquisition include:

- Delivering working software quickly and improving/adapting it incrementally in frequent releases

6 DODI 5000.02, page 11, paragraph 5c(3)(d)
• Collaborating directly with users
• Minimizing governance processes

Agile acquisition is only appropriate after the basic infrastructure is in place. While agile acquisition gives flexibility for adding or enhancing functions and applications, building a network infrastructure requires a deliberate and logically sequenced plan. For most DOD MAIS programs, network infrastructure is so complex and interrelated that there is not much flexibility, and this lack of flexibility nullifies the benefit of agile acquisition. A large system may have an infrastructure software component that is necessary for verification testing of other system components. A program should have a working infrastructure that satisfies the Information Exchange Requirements and network protocol requirements, and have a sufficiently detailed architectural description to ensure each software module fits into the overall enterprise.

Additionally, a MITRE report advises:

… it is absolutely critical that the development of the architecture precede sprint development. Alternatively, a program can initially use a traditional approach to build the initial increment that meets the baseline architecture requirements. Once the program has established the baseline and framed the overall conceptual design, program managers can consider shifting to an agile approach for subsequent increments that build additional functionality into the operational baseline.

For instance, DCGS-A and DCGS-Navy first delivered stable infrastructure with Increment 1, and are now moving to agile acquisition for Increment 2. In both cases, the first phases of Increment 2 improve data infrastructure before adding newer applications.

Implementing a Proven Agile Framework Product

Most successful commercial software developers use proven agile software development framework packages. Popular agile development framework products include Scrum, Extreme Programming, and Scaled Agile Framework (SAFe). These products systematically incorporate the best practices discussed in this section, and make it easy for MAIS programs to implement good ideas from both government and commercial developers. Scrum and SAFe are the approaches most often implemented by MAIS program managers.

The agile acquisition frameworks share common attributes: an integrated team approach that integrates users, developers, and testers; flexible management of requirements priority and urgency; small segments developed and tested before combining into larger segments; and many concurrent activities.

While the commercially available agile frameworks help build good acquisition structure, learning how to use the frameworks is not easy. The program office needs to plan sufficient resources to train acquisition stakeholders. Air Force DCGS is starting to implement SAFe for its Open Architecture development and has heavily invested time and resources to train not only the program office, but everyone in the acquisition community – such as requirement owners, testers, and program sponsors. Such training is essential for the team approach; it is impossible to collaborate until everyone shares a common language and frame of reference.

8 Carnegie Mellon University, Software Engineering Institute report, “Considerations for Using Agile in DoD Acquisition,” 2010
10 A “sprint” is a regular, repeatable work cycle in agile methodology during which work is completed and made ready for review.
DAI is an integrated financial management solution that provides a real-time, web-based system of integrated business processes and is used by defense agency financial managers, program managers, auditors, and the Defense Finance and Accounting Service (DFAS). DAI’s core functionality is based on Oracle E-Business Suite Release 12.2.3 (a commercially available enterprise solutions system).

System

- DAI subsumes many systems and standardizes business processes for multiple DOD agencies and field activities. It modernizes the financial management processes by streamlining financial management capabilities, addressing financial reporting material weaknesses, and supporting financial statement auditability.
- The Defense Information Systems Agency (DISA) provides facilities, network infrastructure, and the hardware operating system for the DAI servers at its Ogden, Utah, and Columbus, Ohio, Defense Enterprise Computing Centers.
- DAI is employed worldwide and across a variety of operational environments via a web portal on the Non-secure Internet Protocol Routing Network (NIPRNET) using each agency’s existing information system infrastructure.

Executive Summary

- The Joint Interoperability Test Command (JITC) conducted an operational assessment (OA) of the Defense Agencies Initiative (DAI) Increment 2 Release 2 from February 29 through March 18, 2016. During this OA, DAI successfully completed 98 percent of the users’ critical tasks.
- During the OA, the DAI Program Management Office (PMO) provided data for only one of six high-level outcomes (HLOs) with defined measures.
- Both DAI’s operational reliability and availability during the OA improved as compared to the previous OA; however, the system continues to require improvements in usability.
- During its cybersecurity testing, DAI was difficult to exploit by an outsider threat but was vulnerable to an insider threat with administrator credentials. Neither DAI nor the network defenders detected Red Team activity or an event designed to artificially stimulate a reaction.
- DAI’s annual continuity of operations (COOP) exercise verified that the alternate site could restore partial mission or business processes, but hosting limitations prohibits the system from efficiently reconstituting back to the primary DAI site.
FY16 DOD Programs

- DAI includes two software increments:
 - Increment 2 replaces Increment 1 and is in use for financial reporting at 12 defense agencies.
 - Increment 2 has four software releases, each with additional capabilities, with deployments to 15 additional defense agencies continuing through FY17. With the completion of Release 2.2 fielding on June 20, 2016, DAI provides services to 20 defense agencies and field activities with 29,852 users at 856 locations worldwide.
- DAI supports financial management requirements in the Federal Financial Management Improvement Act and DOD Business Enterprise Architecture. Therefore, it is a key tool for helping the DOD to have its financial statements validated as ready for audit by the end of FY17 as required by the National Defense Authorization Act for FY10.

Mission
Financial Managers in defense agencies use DAI to transform their budget, finance, and accounting operations to achieve accurate and reliable financial information in support of financial accountability and decision making.

Major Contractors
- CACI Arlington – Arlington, Virginia
- International Business Machines – Armonk, New York
- Northrop Grumman – Falls Church, Virginia

Activity
- From November 16, 2015, to May 31, 2016, JITC and the DISA Risk Management Executive Red Team completed a Cooperative Vulnerability and Penetration Assessment, an Adversarial Assessment, and a Cyber Economic Vulnerability Assessment (CEVA) to test the cybersecurity of DAI.
- From February 29 through March 18, 2016, JITC conducted an OA of DAI Increment 2 Release 2, in accordance with a DOT&E-approved test plan. The test was adequate, except the CEVA data fraud analysis portion, which JITC deferred until the IOT&E.
- The DAI PMO conducted three developmental test events of DAI Increment 2 Release 3 throughout FY16: a development integration test from January 6 through July 28, 2016; a system integration test from June 20 through July 28, 2016; and a user acceptance test conducted from August 2 through September 8, 2016.
- In coordination with DISA, the DAI PMO conducted its annual COOP exercise from April 25 – 29, 2016. As the hosting agency for DAI, DISA provides a mix of tabletop and remote recovery and simulation exercises to meet the program’s system requirements.
- On October 7, 2016, USD(AT&L) signed an Acquisition Decision Memorandum approving limited fielding of DAI Increment 2 Release 3 to current and additional defense agencies.
- On November 9, 2016, USD(AT&L) signed an Acquisition Decision Memorandum approving development of DAI Increment 2 Release 4 with current and additional defense agencies.
- JITC and the DAI PMO are coordinating for a full cybersecurity test (Cooperative Vulnerability and Penetration Assessment, Adversarial Assessment, CEVA, and COOP) for 2Q – 3QFY17 as part of the IOT&E on Increment 2 Release 3.

Assessment
- During the Release 2 OA, DAI successfully completed 669 of 682 critical tasks (98 percent). The 13 unsuccessful tasks include hardware, software, or system errors that have been corrected and user errors that better training and user documentation could address.
- Comparing DAI’s performance during the Release 2 OA to the Release 1 OA, the mean time between system failure improved from 292 to 328 hours and operational availability improved from 83 to 89 percent. The DAI PMO more closely managed scheduled maintenance to increase reliability and availability to users worldwide.
- Users opened 13 critical-level problem tickets from November 1, 2015, to March 18, 2016, and the DAI PMO resolved all within 4 days. Users also opened 189 major-level problem tickets during the same timeframe; by May 10, 2016, the DAI PMO had resolved all but 5 of the tickets.
- The DAI Increment 2 Business Case defines the HLOs, which quantitatively establish the value added by DAI Increment 2. However, of the six HLOs with defined measures, JITC measured only “Automate Absence Management” during the Release 2 OA. During the IOT&E, the DAI PMO must provide data for the remaining HLOs in order to provide a detailed, realistic assessment of the effectiveness of the program.
- In spite of the improvements in the DAI system, users gave the program a System Usability Score of 48, down from 59 reported in the Release 1 OA. Factors causing that decline include:
 - There was a 15 percent increase in DAI users with less than 2 years of experience with the system. Those users scored DAI lower than users with more experience.
 - Frequent user comments on DAI functionality related to the slowness and difficulty to enter data and generate DAI reports, queries, and search requests.
- During the Adversarial Assessment, the DISA Red Team – using limited to moderate cyber-attack capabilities – was unable to exploit DAI as an outsider or as an insider with administrator-level access. The Red Team identified four vulnerabilities. Neither DAI nor the network defenders
detected the Red Team or an event designed to artificially stimulate a reaction.

• During the CEVA, agencies’ financial experts concluded that the existing technical checks would make it difficult to exploit known or potential vulnerabilities to commit fraud.

• During the COOP exercise, DAI PMO testers successfully executed selected business functions on alternate site servers, which verified that the alternate site could restore partial mission or business essential functionality. Because of the limited users and tasks, testing did not include load or performance testing. At present, DISA does not provide reconstitution (failover) as a service which precludes DAI from performing a full reconstitution exercise for the COOP environment.

Recommendations

• Status of Previous Recommendations. The program has implemented changes to address the FY15 recommendations, but the fraud analysis portion of the CEVA was deferred until the IOT&E.

• FY16 Recommendations. The DAI PMO should:

 1. Improve system performance to reduce response times and unexpected errors.
 2. Provide high-level outcome data to JITC both before and during the IOT&E for evaluation of operational effectiveness.
 3. Improve training and documentation to include error message handling, reports and queries in DAI or Oracle business intelligence, and other advanced training courses.
 4. Work with DISA to improve real-time cybersecurity detect and react capabilities for DAI and mitigate known vulnerabilities.
 5. Improve COOP site architecture and capabilities with a goal of developing a data replication capability from COOP to production site.
Executive Summary

Defense Medical Information Exchange Program
- PEO DHMS released a DMIX Full Deployment Decision Acquisition Decision Memorandum on October 12, 2016, officially transitioning DMIX into sustainment.

Defense Medical Information Exchange Release 3
- The U.S. Army Medical Department Board (USAMEDDBD) and Air Force Medical Information Systems Test Bed (AFMISTB) conducted the DMIX Release 3 (R3) Multi-Service Operational Test and Evaluation (MOT&E) at the Air Force Academy, Colorado Springs, Colorado; Fort Carson, Colorado Springs, Colorado; Joint Base Elmendorf-Richardson (JBER), Anchorage, Alaska; and Fort Drum, Watertown, New York, in April and May 2016. The DMIX R3 MOT&E was adequate to evaluate operational effectiveness and suitability. DOT&E did not assess survivability.
- DMIX R3 is operationally effective for queries of DOD and Department of Veterans Affairs (VA) data, but not for external healthcare partner data. Users were able to open all notes with the exception of two Community Health Summary (CHS) notes at JBER. All test patient data evaluated were accurate and timely. All DMIX R3 critical external interfaces met accuracy and timeliness threshold values. The majority of effectiveness failures that DOT&E observed during the test were attributable to two problems:
 - External partner data did not populate in the Immunizations widget.
 - The CHS widget did not consistently open for JBER users, preventing them from viewing external partner data.
- DMIX R3 is operationally suitable. Users rated DMIX R3 usability highly on the System Usability Scale (SUS) and indicated that the response time is adequate. Overall, DMIX R3 availability satisfied the threshold, with DMIX-owned components having higher availability than the required interfacing systems. Overall, 40 percent of the users felt they needed more training on the system.
- DOT&E did not assess DMIX R3 survivability. The cybersecurity Adversarial Assessment (AA) for DMIX R3 was delayed because of test limitations imposed by Defense Information Systems Agency (DISA) Defense Enterprise Computing Center (DECC) Montgomery that did not allow for an adequate test. Cyber testers are planning to conduct a Cooperative Vulnerability and Penetration Assessment (CVPA) and AA on DMIX Release 5 in 1Q – 2QFY17.
- The DOD offered to include VA DMIX components and interfacing VA systems in the full-scope cybersecurity testing planned for DMIX R3, but the VA declined to participate. Instead, the VA requested that the Department of Homeland Security (DHS) National Cybersecurity Assessment and Technical Services team conduct a limited-scope Risk and Vulnerability Assessment in April 2016. The scope of this assessment was not adequate to evaluate the full DMIX program, and did not include an AA, which is a critical part of DOT&E assessments of DOD systems. The DHS identified two critical vulnerabilities that could result in the loss of confidentiality, integrity, or availability of personal health information and personally identifiable information.

Defense Medical Information Exchange Releases 4 and 5
- The DMIX Program Manager developed and developmentally tested DMIX Releases 4 and 5 in 2016. PEO DHMS fielded DMIX Release 4 in July 2016 and DMIX Release 5 in October 2016.
- DOT&E agreed to allow PEO DHMS to include DMIX operational testing within the scope of the DHMSM IOT&E.

Terminology Mapping
- In late FY15 and FY16, the VA independently tested VA and DOD terminology maps to compare cross-organizational mapping and to inform efforts towards computable interoperability. The VA evaluated maps developed separately by the DOD and VA in five
clinical domains. The testing evaluated the terminology within each map as well as the correlation between the two organizations’ maps. The VA had not finalized results from this test in time to be included in this report.

System
- The DMIX program supports integrated sharing of standardized health data among DHMSM, DOD legacy systems, VA, other Federal agencies, and private-sector healthcare providers.
- Together, DHMSM and DMIX are intended to modernize the Military Health System to enhance sustainability, flexibility, and interoperability for improved continuity of care.
- The DOD is developing DMIX incrementally, delivering upgrades to already fielded capabilities:
 - The Joint Legacy Viewer (JLV) provides an integrated, read-only, chronological view of health data from DOD and VA electronic health record systems, eliminating the need for VA or DOD clinicians to access separate viewers to obtain real-time patient information. DOD and VA users logon to their respective JLV web servers using a URL address in their web browser. Users of the Armed Forces Health Longitudinal Technology Application can connect to the JLV web server through the system menu.
 - The Data Exchange Service (DES) receives user queries entered through JLV and queries DOD, VA, and external partner data stores, returning the results to jMeadows. jMeadows maps local VA and DOD clinical terms to standard medical terminology and aggregates the data for presentation by the JLV web server.
 - The Bidirectional Health Information Exchange (BHIE) enables the VA to access clinical data from multiple DOD and VA systems using the DES, BHIE Share, and Clinical Data Repository/Health Data Repository. The Clinical Data Repository/Health Data Repository enables bidirectional exchange of outpatient pharmacy and medication allergy data for checking drug-to-drug and drug-to-allergy interactions.

Mission
The DOD, VA, Federal agencies, and private-sector health providers use the DMIX infrastructure and services to:
- Share standardized health data using standard terminology
- Securely and reliably exchange standardized electronic health data with all partners
- Access a patient’s medical history from a single platform, eliminating the need to access separate systems to obtain patient information
- Maintain continuity of care
- Exchange outpatient pharmacy and medication allergy data and check for drug-to-drug and drug-to-allergy interaction

Major Contractors
- Data Federation/JLV: Hawaii Resource Group – Honolulu, Hawaii
- Test Support: Deloitte – Falls Church, Virginia
- Program Manager support: Technatomy – Fairfax, Virginia

Activity

Defense Medical Information Exchange Program
- PEO DHMS moved the DMIX program under the DHMSM program in August 2016.
- PEO DHMS released a DMIX Full Deployment Decision Acquisition Decision Memorandum on October 12, 2016, officially transitioning DMIX into sustainment.

Defense Medical Information Exchange Release 3
- USAMEDDDBD and AFMISTB conducted a DMIX R3 MOT&E in accordance with the DOT&E-approved test plan at the Air Force Academy, Colorado Springs, Colorado; Fort Carson, Colorado Springs, Colorado; Joint Base Elmendorf-Richardson, Anchorage, Alaska; and Fort Drum, Watertown, New York, in April and May 2016.
- The DHS conducted a Risk and Vulnerability Assessment of DMIX R3 components on VA networks in April 2016.

Defense Medical Information Exchange Release 4
- The DMIX Program Manager conducted developmental testing of DMIX Release 4 at Allegany Ballistics Laboratory, Rocket Center, West Virginia, from April 25 through June 24, 2016.
- The PEO DHMS conducted the DMIX Fielding Decision Review on July 14, 2016, and subsequently fielded DMIX Release 4.

Defense Medical Information Exchange Release 5
- The DMIX Program Manager conducted developmental testing of DMIX Release 5 at Allegany Ballistics Laboratory, Rocket Center, West Virginia, from August 19 through September 30, 2016.
- The PEO DHMS conducted the DMIX Fielding Decision Review on October 14, 2016, and subsequently fielded DMIX Release 5.

Terminology Mapping
- In late FY15 and FY16, the VA independently tested VA and DOD terminology maps in five clinical domains to compare cross-organizational mapping and to inform efforts towards computable interoperability.
Assessment

- DMIX R3 is operationally effective for queries of DOD and VA data, but not for external healthcare partner data. All test patient records displayed in JLV were accurate as compared to the source data. Test patient data displayed in JLV were complete in 97 percent of the queries. Failures resulting from external healthcare partner data not displaying in the Immunizations widget accounted for 16 of the 20 completeness failures. Users opened all widgets successfully 92 percent of the time. The majority of failures to open all widgets (57 of 64) were failures to open the CHS widget at JBER. Widget sets downloaded within the 2 minute threshold 90 percent of the time. Users had a success rate of 99 percent when opening a note. Of the successful note downloads by DOD users, all notes displayed within 60 seconds. All but 2 of the CHS notes successfully downloaded by VA users at JBER displayed within 60 seconds.
- The Joint Interoperability Test Command evaluated four critical external interfaces using jMeadows server log files provided by the program manager. All four – namely the Patient Discovery Web Services, Master Veteran Index, DES, and Veterans Health Information Systems and Technology Architecture Data Service – met accuracy and timeliness threshold values.
- DMIX R3 is operationally suitable. Users rated DMIX R3 usability highly, with a mean score of 80 on the SUS. There were no significant differences in SUS ratings between sites, agencies, or user experience with JLV. Users liked the JLV data display and indicated that the response time was adequate. They liked the help features with the exception of error messages; users documented 107 test incidents regarding unclear error messages that did not adequately support them. Overall, 40 percent of the users (71 of 178) felt they needed more training on the system. Users who reported receiving only computer-based training, which is the primary medium, most often felt that they needed more training. The DMIX help desk was responsive and resolved help desk tickets in a timely manner. DMIX R3 availability – i.e., the ability of any user to query the system via JLV at a given time and potentially to view a patient’s entire record – was 92.5 percent. This measure included supporting systems but did not account for the availability of DOD or VA databases. DMIX system components showed availability of 99.7 percent for JLV/ jMeadows and 98.3 percent for DES.
- DOT&E did not assess DMIX R3 survivability. The cybersecurity AA for DMIX R3 was delayed because of test limitations imposed by DISA DECC Montgomery that did not allow for an adequate test. Cyber testers are planning to conduct a CVPA and AA on DMIX Release 5 in 1Q – 2QFY17, while also working with DISA to mitigate prior test limitations.
- The DOD offered to include DMIX components and interfacing systems on VA networks in the full-scope cybersecurity testing planned for DMIX R3, but the VA declined to participate. Instead, the DHS National Cybersecurity Assessment and Technical Services team conducted a limited-scope Risk and Vulnerability Assessment at the request of the VA. Testing included vulnerability scanning as well as penetration testing of the VA JLV server stack. The scope of this assessment was not adequate to evaluate the full DMIX program because other DMIX components and interfacing systems were not included in the assessment. The VA did not conduct an AA, which is a critical part of DOT&E assessments of DOD systems. The DHS identified two critical vulnerabilities that could result in the loss of confidentiality, integrity, or availability of personal health information and personally identifiable information.

Defense Medical Information Exchange Releases 4 and 5

- The DMIX Program Manager developed and developmentally tested DMIX Releases 4 and 5 in 2016. PEO DHMS fielded DMIX Release 4 in July 2016 and DMIX Release 5 in October 2016.
- DOT&E agreed to allow PEO DHMS to include DMIX operational testing within the scope of the DHMSM IOT&E.

Terminology Mapping

- The VA independently evaluated the VA-DOD data maps for the Vital Signs, Medications, Payers, Documents, and Allergies clinical domains using a Structured Query Language analysis. This evaluation compared terminology within the maps individually as well as the correlation between the two organizations’ maps. The VA had not finalized results from this test in time to be included in this report.

Recommendations

- Status of Previous Recommendations. The DMIX PMO has addressed the FY15 recommendations.
- FY16 Recommendations.
 1. The DMIX Program Manager should:
 - Diagnose and correct CHS problems.
 - Alert users when data do not load or are not available.
 - Improve error messages to provide users with better feedback where feasible.
 - Conduct DMIX Release 5 operational testing in conjunction with cybersecurity testing (CVPA and AA).
 2. The PEO DHMS should expand VA testing of correlation between the DOD and VA terminology maps to more clinical domains in order to fully understand the interoperability of medical records between the two organizations.
 3. The VA should:
 - Correct JLV cybersecurity vulnerabilities discovered during the DHS Risk and Vulnerability Assessment.
 - Allow a DOD Red Team to perform cybersecurity testing (CVPA and AA) of DMIX components and interfacing systems on VA networks.
DRRS-S is operationally suitable. Users assessed the system usability as being acceptable. Users accessed the DRRS-S mission readiness view in a mean time of 20 seconds, well below the 5 minutes required. The system was operationally available 99.9 percent of the time and help desk support was responsive to user requests for assistance. Users reported no critical software failures between June and October 2015.

DRRS-S is operationally survivable against a cyber threat with moderate capabilities. The DRRS PM corrected most cybersecurity vulnerabilities discovered in the Cooperative Vulnerability and Penetration Assessment phase of testing, and the Red Team could not exploit them during the Adversarial Assessment.

Based upon the IOT&E Emerging Results Brief, dated February 17, 2016, the Principal Deputy Assistant Secretary of Defense (Readiness) and the Director of the Joint Staff approved the transition from the Global Status of Resources and Training System to DRRS-S on March 1, 2016.
System
- DRRS-S is a Secret Internet Protocol Router Network-accessible web application designed to replace the Global Status of Resources and Training System, a force readiness component of Global Command and Control System – Joint.
- DRRS-S production and backup systems are hosted at separate Defense Enterprise Computing Centers on commercial off-the-shelf hardware consisting of application and database server enclaves using Microsoft Windows operating systems.
- DRRS-S receives and processes readiness reports and data from Service-specific increments of the larger DRRS enterprise, including DRRS-Army, DRRS-Marine Corps, and DRRS-Navy. Combatant Commanders and the subordinates they direct, DOD agencies, and Air Force units report directly within DRRS-S.

Activity
- From May 2015 through June 2015, JITC conducted an IOT&E in accordance with the DOT&E-approved test plan. The IOT&E revealed a number of significant deficiencies with the system and end-to-end data management processes. Therefore, the DRRS-S PM requested an extension of the IOT&E through October 2015 to allow for the correction of system deficiencies and provide sufficient time for JITC to independently verify the fixes. DOT&E agreed to the extension.
- JICT continued the IOT&E in September and October 2015 using the DOT&E-approved test plan. This test window included two monthly readiness reporting cycles to verify the accuracy, completeness, and timeliness of Service readiness reports.
- Based upon the IOT&E Emerging Results Brief, dated February 17, 2016, the Principal Deputy Assistant Secretary of Defense (Readiness) and the Director of the Joint Staff approved the transition from the Global Status of Resources and Training System to DRRS-S on March 1, 2016.

Assessment
- DRRS-S is operationally effective. Tactical units entered objective, accurate, and timely resources and training measurement data into DRRS-S and the Service DRRS variants to inform resource assessments of core missions and other mission assessments of units at all levels. The Service DRRS variants for the Army, Navy, and Marine Corps effectively published these data to DRRS-S, such that users could view all readiness assessments within DOD from the DRRS-S application. DRRS-S could then publish readiness assessment information to other critical downstream consumers, such as the Joint Operations Planning and Execution System and the Global Combat Support System (GCSS) – Joint. The Services’ and the Joint Staff’s readiness staffs faced some challenges to attain a common understanding of the current reporting status of all DOD units, but close coordination allowed staff members to explain apparent differences in readiness data. The Services’ and Joint Staff’s representatives agreed that the adverse mission impact of the apparent differences was low.
- The information in DRRS-S is only as objective, accurate, and timely as the data received and processed from the Services. DOT&E’s evaluation of DRRS-S resource category levels considered whether they were consistent with 1) Service-reported resource levels, to assess DRRS-S accuracy and timeliness, and 2) the prescribed procedures in the Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 3401.02B, to assess objectivity of DRRS-S data. As discussed above, DRRS-S data were accurate and timely.
 - Air Force assessments were consistent with CJCSI guidance for all four resource and training categories.
 - The Army’s method for calculating the Equipment Condition/Readiness level (referenced as the R-level) relies on dated information from the Army Material Status System report, which provides availability rates from the previous month. The Army plans to follow the CJCSI rule more precisely after the maintenance functions in GCSS-Army are fielded in FY17. DOT&E expects that Army assessments will be consistent with CJCSI guidance once the Army fields GCSS-Army maintenance functions.
 - Marine Corps assessments were consistent with the CJCSI guidance with the observation that units must manually transcribe data from GCSS-Marine Corps into DRRS-Marine Corps, which increases workload and the chance for errors.

Mission
- The Combatant Commanders, military Services, Joint Chiefs of Staff, Combat Support Agencies, and other key DOD users (such as the SECDEF and National Guard) use the DRRS collaborative environment to evaluate the readiness and capability of U.S. Armed Forces to carry out assigned and potential tasks.
- Reporting organizations input both mission readiness and unit readiness data – such as Status of Resources and Training System data – into DRRS-S and use it to make mission readiness assessments against standardized missions and tasks.

Major Contractor
InnovaSystems International, LLC – San Diego, California
Navy assessments were inconsistent with the CJCSI guidance, with only 30 percent (10 of 33) of assessed levels in DRRS-S consistent with the objective Figures of Merit in DRRS-Navy. The differences primarily are due to commander subjective upgrades of the readiness levels, which could reflect that the commander has more current knowledge than DRRS-S. However, some of the upgrades indicate some variation from the objective criteria in the CJCSI for the Navy core resource levels. The Navy should improve its guidance to commanders so that the DRRS-S resource levels are based on objective criteria, consistent with the Figures of Merit in DRRS-Navy.

- DRRS-S is operationally suitable. Users assessed the system usability as being acceptable, as evidenced by the average System Usability Scale score of 70.9, a high score for a DOD system. Users accessed the DRRS-S readiness view in a mean time of 20 seconds, well below the 5 minutes required. The system was operationally available 99.9 percent of the time and help desk support was responsive to user requests for assistance. Users reported no critical software failures between June and October 2015. A third of users responding in the survey felt that they needed more training, especially on the Air Force Input Tool, and this is substantiated by help desk requests for Business Intelligence Tool access and training. Although the DRRS PM has procedures to inform the Services whether published messages were processed, users still observed data mismatches between the Service DRRS variants and DRRS-S, such as duplicate or out-of-date mission-essential tasks in DRRS-S and coordinate with the Services and Joint Staff to correct the data on a regular basis.

- DRRS-S is operationally survivable against a cyber threat with moderate capabilities. The DRRS PM corrected most cybersecurity vulnerabilities discovered in the Cooperative Vulnerability and Penetration Assessment phase of testing, and the Red Team could not exploit them during the Adversarial Assessment.
Department of Defense (DOD) Teleport

Executive Summary

- The Defense Information Systems Agency (DISA) is developing the Teleport Generation 3 Phase 3 (G3P3) capability that is intended to provide interconnectivity between legacy Ultra High Frequency (UHF) radios and Mobile User Objective System (MUOS) radios. To achieve the G3P3 capability, the program manager is adding two new components to the Teleport architecture: the MUOS to Legacy Gateway Component (MLGC) and MUOS Voice Gateway (MVG). The program manager is planning to install the MLGC at five of the six primary Teleport sites and the MVG at the Virginia and Hawaii Teleport sites, collocated with two MUOS Radio Access Facilities.

- During developmental test and evaluation (DT&E), DISA tested G3P3 voice capability but did not test data capability. The unclassified voice test results met the 88 percent required completion rate, but classified legacy to MUOS voice did not meet this completion rate. The data DISA collected during DT&E were insufficient to provide statistical confidence.

- DISA postponed the OT&E from October 2016 to 4QFY17, and the FOT&E from 4QFY17 to 1QFY18 due to technical and integration problems. The program manager is conducting root cause analysis and corrective actions to address the problems.

System

- DOD Teleport sites are globally distributed Satellite Communication (SATCOM) facilities. There are six core Teleport facilities located in Virginia, Germany, Italy, Japan, Hawaii, and California, and two secondary facilities located in Bahrain and Australia (future). Teleport sites consist of four segments:
 - The radio frequency segment consists of SATCOM earth terminals that operate in UHF, X, C, Ku, Ka, and Extremely High Frequency bands. The terminals provide radio frequency links between the Teleport site and the deployed user SATCOM terminal via military or commercial satellites.
 - The baseband segment includes encryption, switching, multiplexing, and routing functions for connecting data streams or packetized data to the terrestrial Defense Information Systems Network (DISN).

- The network services segment provides connectivity to the DISN long-haul networks and other internet functions necessary to meet the user’s requirements.

- The management control segment provides centralized monitoring and control of Teleport baseband hardware, earth terminal hardware, transmission security, and test equipment.

- Teleport provides deployed forces access to standard fixed gateways from anywhere in the world for all six DISN services:
 - Secret Internet Protocol Router Network
 - Non-secure Internet Protocol Router Network
 - Defense Red Switch Network
 - Defense Switched Network
 - Video Teleconference
 - Joint Worldwide Intelligence Communications System

Mission

Combatant Commanders, Services, and deployed operational forces use DOD Teleport systems in all phases of conflict to gain access to worldwide military and commercial SATCOM services.

Major Contractor

Government Integrator: DISA – Fort Meade, Maryland

Activity

- DISA is developing the Teleport G3P3 capability that is intended to provide interconnectivity between legacy UHF radios and MUOS radios. To achieve the capability, the program manager is adding two new components to the Teleport architecture, the MLGC and MVG. The program manager is planning to install the MLGC at five of the six primary Teleport sites and the MVG at the Virginia and Hawaii Teleport sites, collocated with two MUOS Radio Access Facilities.
FY16 DOD PROGRAMS

• DISA conducted the initial DT&E from April through May 2016 at the Northwest Teleport site in Chesapeake, Virginia. Deployed users participated from the Navy’s USS Gridley (San Diego, California) and USS Schamal (Mayport, Florida); the Coast Guard’s USCGC Sherman (Pearl Harbor, Hawaii); Air Station Elizabeth City, North Carolina; and the Army’s 10th Mountain Division (Fort Drum, New York). Government technicians operated the MLGC at the Northwest Teleport, and operated radios at the Space and Naval Warfare Systems Command (SPAWAR) Systems Center in Charleston, South Carolina.
• DISA conducted DT&E-2 from July through August 2016 at the Northwest Teleport site. Deployed users participated from the Navy’s USS Sampson (San Diego, California), the Army’s 3rd Corps at Fort Hood, Texas, and the Air Force’s 59th Test and Evaluation Squadron at Nellis AFB, Nevada. Government technicians operated the MLGC at the Northwest Teleport, and radios at the SPAWAR Systems Center in Charleston, South Carolina.
• DISA postponed the OT&E from October 2016 to 4QFY17, and the FOT&E from 4QFY17 to 1QFY18 due to technical and integration problems. The program manager is conducting root cause analysis and corrective actions to address the problems.
• The Joint Interoperability Test Command is developing the operational test plan, with guidance from DOT&E.

Assessment
• Since the Services have not yet fielded MUOS terminals, operator inexperience and immature user operations impaired effective involvement of deployed users for testing. Inexperience contributed to problematic cryptographic key management, problems creating profiles for the MUOS terminal, and the inability of a MUOS terminal to join an Internet Protocol network. User experience and proficiency will be essential to successful future operational testing.
• During DT&E, DISA tested the G3P3 voice capability but did not test the data capability. The unclassified voice test results met the 88 percent required completion rate but classified legacy-to-MUOS voice did not meet this completion rate. The data DISA collected during DT&E were insufficient to provide statistical confidence.
• During DT&E-2, DISA tested both G3P3 classified and unclassified voice and unclassified data capabilities. The classified legacy UHF to MUOS voice test results indicate that the capability may not be operationally viable without changes to techniques and procedures. The data DISA collected during the DT&E-2 were insufficient to provide statistical confidence.

Recommendations
• Status of Previous Recommendations. DISA has satisfactorily addressed all previous recommendations.
• FY16 Recommendation.
 1. The Joint Interoperability Test Command should ensure the data collected during the OT&E are sufficient to provide statistical confidence in the results.
Executive Summary

- The Leidos Partnership for Defense Health (LPDH) began functional Contractor Integration Testing (CIT) of Military Health System (MHS) GENESIS at Leidos in Vienna, Virginia, on July 25, 2016. Over the succeeding 3 months, LPDH experienced a higher rate of functional and interface defects than expected.
- As of November 8, 2016, LPDH had successfully completed 70 percent (1,008 of 1,437) of the CIT test cases with 4 open Severity 1 and 75 open Severity 2 defects. At that time, LPDH had fixed and successfully retested 42 Severity 1 and 352 Severity 2 defects. A Severity 1 defect prevents the accomplishment of an essential capability and a Severity 2 defect adversely affects the accomplishment of an essential capability with no known workaround.
- Interface development has proved difficult for LPDH and legacy system owners, with the highest defect rates in the MHS GENESIS interfaces with the Defense Enrollment Eligibility Reporting System (DEERS) and Defense Medical Information Exchange (DMIX) system. Both of these interfaces are critical for MHS GENESIS to function correctly.
- The Defense Health Agency (DHA) Cybersecurity Division conducted a Risk Assessment of commercial services shared with the DOD at the Cerner Technology Center in Kansas City, Missouri, identifying over 8,000 cybersecurity vulnerabilities of varying severity. LPDH committed to have all mitigations for the highest severity vulnerabilities completed by December 31, 2016.
- The DHA Cybersecurity Division conducted an Independent Verification and Validation of DOD Specific Infrastructure at the Cerner Technology Center – Kansas City, identifying over 3,000 cybersecurity vulnerabilities of varying severity. The number of vulnerabilities identified by the DHA during the Risk Assessment and Independent Verification and Validation was larger than the program manager and LPDH expected.
- On October 7, 2016, USD(AT&L) approved a modified MHS GENESIS program schedule to allow the program manager additional time to finalize system interfaces, implement clinical capabilities, complete cybersecurity risk management, and provide time to test these capabilities prior to initial deployment. The new schedule delays go-live by 2 months, to

- Although the modified program schedule removes most of the overlap in testing, significant technical and schedule risks remain due to the large number of high severity defects and cybersecurity vulnerabilities that the program manager still needs to address.

System
- The DOD Healthcare Management System Modernization (DHMSM) program will acquire and field MHS GENESIS, a modernized Electronic Health Records (EHR) System, to 153,000 Military Health System personnel, providing care for 9.4 million DOD beneficiaries worldwide.
- MHS GENESIS comprises three major elements: 1) the Millennium suite of applications, developed by Cerner, which provides clinical capabilities; 2) Dentrix Enterprise, developed by Henry Schein Inc., which provides dental capabilities; and 3) Orion Rhapsody, the framework that enables the majority of the external information exchanges.
- The DHMSM program established two program segments to support deployment of the DHMSM EHR System to the DOD enterprise:
 - Fixed Facility (Segment 1) supports all medical and dental services delivered by permanent inpatient hospitals and medical centers, ambulatory care clinics, and dental clinics.
 - Operational Medicine (Segment 2) supports theater hospitals, hospital ships, forward resuscitative sites, naval surface ships, and submarines. The EHR System will be configured to work on the Operational Medicine infrastructure. The DHMSM program will provide MHS GENESIS to the Joint Operational Medicine Information System Program Office for implementation.
- DHMSM is intended to transition the DOD to a state-of-the-market EHR. It will replace legacy healthcare systems including the Armed Forces Health Longitudinal Technology Application (AHLTA), Composite Health Care System (CHCS), and Essentris inpatient system. DHMSM will replace legacy Operational Medicine components of the Theater Medical Information Program – Joint software suite including AHLTA-Theater, TMIP CHCS Cache, and AHLTA-Mobile.

Mission
DOD medical staff will use the EHR to deliver enroute care, dentistry, emergency department, health, immunization, laboratory, radiology, operating room, pharmacy, vision, audiology, and inpatient/outpatient services. DOD medical staff will also use the EHR to perform administrative support, front desk operations, logistics, and business intelligence.

Major Contractors
- Leidos – Reston, Virginia
- Cerner – Kansas City, Missouri
- Accenture Federal Services – Arlington, Virginia
- Henry Schein Inc. – Melville, New York

Activity
- On July 25, 2016, the LPDH began functional CIT for DHMSM at Leidos in Vienna, Virginia.
- From July 18 – 29, 2016, the DHA Cybersecurity Division conducted a Risk Assessment of shared commercial services at the Cerner Technology Center – Kansas City.
- From August 1 – 12, 2016, the DHA Cybersecurity Division conducted an Independent Verification and Validation on DOD-specific infrastructure at the Cerner Technology Center – Kansas City.
- On August 15, 2016, the DHA provided Program Executive Officer, Defense Healthcare Management Systems (PEO DHMS) a list of MHS GENESIS minimum essential capability showstoppers that must be resolved prior to go-live at the IOC sites.
- On September 1, 2016, PEO DHMS announced that the DHMSM program schedule would be modified.
- On October 7, 2016 the Program Manager presented LPDH’s plan to adjudicate, retest, and close all high severity defects to USD(AT&L), who subsequently approved a modified program schedule for MHS GENESIS. The new schedule delays go-live by 2 months, to February 7, 2017, and changes the initial fielding site from the Naval Hospital Oak Harbor, Washington to the 92nd Medical Group at Fairchild AFB, Washington.
- On November 10, 2016 the program manager waived the Government Developmental Test (DT) entrance criteria and began the testing on November 14, 2016.
- The Joint Interoperability Test Command (JITC) is scheduled to conduct a scenario-based operational assessment (OA) with a Cooperative Vulnerability and Penetration Assessment (CVPA) in the Fixed Facility (FF) Government Approved Laboratory (GAL), Auburn, Washington, from February 13 through March 20, 2017.
- JITC plans to conduct IOT&E and a cybersecurity Adversarial Assessment in July and August 2017.
Assessment

- LPDH began functional CIT of MHS GENESIS at Leidos in Vienna, Virginia, on July 25, 2016. Over the succeeding 3 months, LPDH experienced a higher rate of functional and interface defects than expected, slowing CIT test case execution.

- Interface development has proved difficult for LPDH and legacy system owners, with the highest defect rates in the MHS GENESIS interfaces with the DEERS and DMIX system. The program manager and LPDH are reviewing terminology mapping disparities discovered between legacy systems and MHS GENESIS, to determine if changes are required to the DMIX terminology mapping tables or in MHS GENESIS.

- The DHA Cybersecurity Division Risk Assessment identified 3,606 Category (CAT) I, 4,185 CAT II, and 626 CAT III vulnerabilities. The CAT I, II, and III codes rate the severity of vulnerabilities, with CAT I vulnerabilities being the most severe. Exploitation of a CAT I vulnerability directly leads to loss of confidentiality, availability, or integrity of data. LPDH committed to have all mitigations for the highest severity vulnerabilities completed by December 31, 2016.

- The DHA Cybersecurity Division Independent Verification and Validation of DOD-specific infrastructure identified 397 CAT I, 2,764 CAT II, and 328 CAT III vulnerabilities. The majority of these vulnerabilities were related to commercial software patches not installed on assessed assets. The number of vulnerabilities identified by the DHA during the Risk Assessment and Independent Verification and Validation was larger than the program manager and LPDH expected. The program manager developed a Plan of Action and Milestones with mitigations to address the highest severity findings.

- The modified MHS GENESIS program schedule allows the program manager additional time to finalize system interfaces, implement clinical capabilities, complete cybersecurity risk management, and provide time to test these capabilities prior to initial deployment. Although the modified program schedule removes most of the overlap in testing, significant technical and schedule risks remain.

 - The number of open high severity defects discovered by LPDH during the CIT peaked at 15 Severity 1 and 148 Severity 2 defects on October 18, 2016. As of November 8, 2016, LPDH was working to close 4 Severity 1 and 75 Severity 2 defects and already had fixed and successfully retested 42 Severity 1 and 352 Severity 2 defects. A Severity 1 defect prevents the accomplishment of an essential capability and a Severity 2 defect adversely affects the accomplishment of an essential capability with no known workaround.

- As of November 8, 2016, LPDH had successfully completed 70 percent (1,008 of 1,437) of planned CIT test. The program manager deferred or deleted 381 CIT test cases, reducing the total number planned from 1,818 to 1,437. LPDH is scheduled to complete CIT on November 25, 2016.

- On November 10, 2016, the program manager waived the DT entrance criteria and began the testing on November 14, 2016. DOT&E advised the program manager against entering DT because he may need to devote time during DT to resolve incomplete interfaces, cybersecurity vulnerabilities, open defects, and previously untested functionality. If the program manager experiences high defect discovery rates in DT like LPDH experienced in CIT, there will be insufficient time to ensure the system works prior to go-live on February 7, 2017.

- LPDH is scheduled to conduct two scenario-based integration and validation events in January 2017 to prepare the 92nd Medical Group for go-live at Fairchild AFB, Washington. JITC is scheduled to observe the integration and validation events and provide an independent observation memorandum to inform the go-live decision. The 92nd Medical Group go-live decision will be informed by developmental test results and integration and validation event observations, as no operational testing is scheduled prior to this decision date.

- After go-live, LPDH will be maintaining two separate baselines, an operational MHS GENESIS baseline to support live operations and a test baseline to support the OA and future development. Because the system will go-live one week prior to the JITC-lead OA, the baselines will likely not be frozen to allow LPDH to correct deficiencies that may be discovered by the 92nd Medical Group.

Recommendations

- Status of Previous Recommendations. This is the first annual report for this program.

- FY16 Recommendations. The program manager should:
 1. Ensure all high-severity defects are mitigated prior to go-live at Fairchild AFB and all workarounds are documented and available to operational users.
 2. Validate that high severity cyber vulnerabilities identified during the DHA Risk Assessment and Independent Verification and Validation have been fixed or mitigated prior to go-live at Fairchild AFB.
Executive Summary

Test Strategy, Planning, Activity, and Assessment

- The Joint Strike Fighter (JSF) Program Office (JPO) acknowledged in 2016 that schedule pressure exists for completing System Development and Demonstration (SDD) and starting Initial Operational Test and Evaluation (IOT&E) by August 2017, the planned date in JPO’s Integrated Master Schedule. In an effort to stay on schedule, JPO plans to reduce or truncate planned developmental testing (DT) in an effort to minimize delays and close out SDD as soon as possible. However, even with this risky, schedule-driven approach, multiple problems and delays make it clear that the program will not be able to start IOT&E with full combat capability until late CY18 or early CY19, at the soonest. These problems include:

- Continued schedule delays in completing Block 3F mission systems development and flight testing, which DOT&E estimates will likely complete in July 2018
- Delayed and incomplete Block 3F DT Weapons Delivery Accuracy (WDA) events and ongoing weapons integration issues
- Continued delays in completing flight sciences test points, particularly those needed to clear the full F-35B Block 3F flight envelope, resulting in a phased release of Block 3F envelope across the variants, with the full Block 3F envelope for F-35B not being released until mid-CY18
- Further delays in completing gun testing for all three variants and recently discovered gunsight deficiencies
- Late availability of verified, validated and tested Block 3F Mission Data Loads (MDLs) for planned IOT&E and aircraft delivery dates; DOT&E estimates the first validated MDLs will not be available until June 2018
- Continued shortfalls and delays with the Autonomic Logistics Information System (ALIS) and late delivery of ALIS version 3.0, the final planned version for SDD, at risk of slipping from early CY18 into mid-CY18
- Significant, well-documented deficiencies; for hundreds of these, the program has no plan to adequately fix and verify with flight test within SDD; although it is common for programs to have unresolved deficiencies after development, the program must assess and mitigate the cumulative effects of these remaining deficiencies on F-35 effectiveness and suitability prior to finalizing and fielding Block 3F
- Overall ineffective operational performance with multiple key Block 3F capabilities delivered to date, relative to planned IOT&E scenarios which are based on various fielded threat laydowns
- Continued low aircraft availability and no indications of significant improvement, especially for the early production lot IOT&E aircraft

- Insufficient progress in verification of Joint Technical Data, particularly those for troubleshooting aircraft fault codes and for support equipment
- Delays in completing the required extensive and time-consuming modifications to the fleet of operational test aircraft which, if not mitigated with an executable plan and contract, could significantly delay the start of IOT&E
- Insufficient progress in the following areas which are required for IOT&E:
 - Development, integration, and testing of the Air-to-Air Range Infrastructure instrumentation into the F-35 aircraft
 - Flight testing to certify the Data Acquisition, Recording, and Telemetry pod throughout the full flight envelope
 - Development of other models, including the Fusion Simulation Model, Virtual Threat Insertion table, and the Logistics Composite Model
- Delays in providing training simulators in the Block 3F configuration to the initial training centers and operational locations
- Based on these ongoing problems and delays, and including the required time for IOT&E spin-up, the program will not be ready to start IOT&E until late CY18, at the soonest, or more likely early CY19. In fact, IOT&E could be delayed to as late as CY20, depending on the completion of required modifications to the IOT&E aircraft.

Progress in Developmental Testing

- Mission Systems Testing
 - The program continues to pursue a cost- and schedule-driven plan to delete planned mission systems DT points by using other test data for meeting test point objectives in order to accelerate SDD close-out. This plan, if not properly executed with applicable data,
FY16 DOD PROGRAMS

sufficient analytical rigor and statistical confidence, would shift significant risk to operational test (OT), Follow-on Modernization (FoM) and the warfighter.

- This risky approach would also discard carefully planned build-up test content in the Test and Evaluation Master Plan (TEMP) and the Block 3F Joint Test Plan (JTP), content the program fully agreed was required when those documents were signed. The program plans to “quarantine” JTP build-up test points, which are planned to be flown by the test centers, and instead skip ahead to complex graduation-level Mission Effectiveness Risk Reduction test points, recently devised to quickly sample full Block 3F performance. Then, if any of the Block 3F functionality appears to work correctly during the complex test points, the program would delete the applicable underlying build-up test points for those capabilities and designate them as “no longer required.” However, the program must ensure the substitute data are applicable and provide sufficient statistical confidence that the test point objectives had been met prior to deleting any underlying build-up test points. While this approach may provide a quick sampling assessment of Block 3F capabilities, there are substantial risks. The multiple recent software versions for flight test may prevent the program from using data from older versions of software to count for baseline test point deletions because it may no longer be representative of Block 3F. The limited availability and high cost of Western Test Range periods, combined with high re-fly rates for test missions completed on the range, make it difficult for the program to efficiently conduct this testing. Finally, the most complex capabilities in Block 3F have only recently reached the level of maturity to allow them to be tested, and they are also some of the most difficult test points to execute (i.e., full Block 3F capabilities and flight envelope).

- Historical experience indicates this approach, if not properly executed, may delay problem discoveries and increase the risk to completing SDD and increase the risk of failure in IOT&E (as well as, much more importantly, in combat). In fact, the program needs to allocate additional test points – which are not in its current plans – for characterization, root cause investigations, and correction of a large number of the open high-priority deficiencies and technical debt described later in this report. The completion of the planned baseline test points from the Block 3F JTP, along with correction or mitigation of significant deficiencies, is necessary to ensure full Block 3F capabilities are adequately tested and verified before IOT&E and, more importantly, before they are fielded for use in combat.

- Until recently, the Program Office estimated that mission systems flight testing will complete in October 2017. It now acknowledges the risk that this testing may extend into early CY18.

 - The October 2017 estimate was based on an inflated test point accomplishment rate and optimistically low regression and re-fly rates. The estimate also assumed that the Block 3FR6 software, delivered to flight test in December 2016, would have the maturity necessary to complete the remaining test points and meet specification requirements without requiring additional versions of software to address shortfalls in capability. However, this is highly unlikely, since several essential capabilities – including aimed guns and Air-to-Air Range Infrastructure – had not yet been flight tested or did not yet work properly when Block 3FR6 was released.

 - The Services have designated 276 deficiencies in combat performance as “critical to correct” in Block 3F, but less than half of the critical deficiencies were addressed with attempted corrections in 3FR6.

 - Independent estimates from other Pentagon staff agencies vary from March 2018 to July 2018 to complete mission systems testing – all based on the current number of test points remaining and actual historic regression and re-fly rates from the flight test program. Even these estimates are optimistic in that they account for only currently planned testing, which does not yet include the activities needed to correct the Services’ remaining high-priority deficiencies.

- Flight sciences testing continues to be a source of significant discovery, another indication that the program is not nearing completion of development and readiness for IOT&E. For example:

 - Fatigue and migration of the attachment bushing in the joint between the vertical tail and the aircraft structure are occurring much earlier than planned in both the F-35A and F-35B, even with a newly designed joint developed to address shortfalls in the original design.

 - Excessive and premature wear on the hook point of the arresting gear on the F-35A, occurring as soon as after only one use, has caused the program to consider developing a more robust redesign.

 - Higher than predicted air flow temperatures were measured in the engine nacelle bay during flight testing in portions of the flight envelope under high dynamic pressure on both the F-35A and F-35C; thermal stress analyses are required to determine if airspeed restrictions will be needed in this portion of the flight envelope.

 - Overheating of the horizontal tail continued to cause damage, as was experienced on BF-3, one of the F-35B flight sciences test aircraft, while accelerating in afterburner to Mach 1.5 for a loads test point. The left horizontal inboard fairing surface reached temperatures that exceeded the design limit by a significant amount. Post-flight inspections revealed de-bonding due to heat damage on the trailing edge of the horizontal tail surface and on the horizontal tail rear spar.

 - Vertical oscillations during F-35C catapult launches were reported by pilots as excessive, violent, and therefore a safety concern during this critical phase of flight. The program is still investigating alternatives to address this
deficiency, which makes a solution in time for IOT&E and Navy fielding unlikely.

Mission Data Load Development and Testing

- Mission data files, which comprise MDLs, are essential to enable F-35 mission systems to function properly. Block 3F upgrades to the U.S. Reprogramming Laboratory (USRL) – where mission data files are developed, tested and validated for operational use – are late to meet the needs for Block 3F production aircraft and IOT&E. These upgrades to the Block 3F configuration, including the associated mission data file generation tools, are necessary to enable the USRL to begin Block 3F mission data file development. In spite of the importance of the mission data to both IOT&E and to combat, the Program Office and Lockheed Martin have failed to manage, contract, and deliver the necessary USRL upgrades to the point that fully validated Block 3F MDLs will not be ready for IOT&E until June 2018, at the earliest.

- Operational units are also affected by the capability shortcomings in the USRL to create, test and field MDLs. The complete set of Block 2B and Block 3i MDLs developed for overseas areas of responsibility (AORs) have yet to undergo the full set of lab and flight tests necessary to validate and verify these MDLs for operational use. Because of the delays in upgrading the USRL to the Block 3F configuration, the Services will likely not have Block 3F MDLs for overseas AORs until late 2018 or early 2019.

- In addition to the late Block 3F USRL upgrades, the required signal generators for the USRL – with more high-fidelity channels to simulate modern fielded threats – have not yet been placed on contract. As a result, the Block 3F MDLs will not be tested and optimized to ensure the F-35 will be capable of detecting, locating, and identifying modern fielded threats until 2020, per a recent program schedule. The program is developing multiple laboratories in order to produce MDLs tailored for partner nation-unique requirements, some of which will have more high-fidelity signal generator channels earlier than the USRL. The program is considering using one of these other laboratories for Block 3F MDL development and testing; however, the MDL that will be used for IOT&E must be developed, verified, validated, and tested using operationally representative procedures, like the MDLs that will be developed for the operational aircraft in the USRL.

Weapons Integration and Demonstration Events

- Block 3F weapons delivery accuracy (WDA) events are not complete. These events, required by the TEMP, are key developmental test activities necessary to ensure the full fire-control capabilities support the “find, fix, track, target, engage, assess” kill chain. As of the end of November, only 5 of the 26 events (excluding the gun events) had been completed and fully analyzed. Several WDAs have revealed deficiencies and limitations to weapons employment (e.g., AIM-9X seeker status tone problems and out-of-date launch zones for AIM-120 missiles). An additional 11 WDAs had occurred, but analyses were ongoing. Of the 10 remaining WDAs that had not been completed, 4 were still blocked due to open deficiencies that must be corrected before the WDA can be attempted. However, the program did not have time to fix the deficiencies, complete the remaining WDAs and analyze them before finalizing Block 3FR6 in late November for flight testing to begin in December 2016. For example, recent F-35C flight testing to prepare for a weapons event with the C-1 version of the Joint Stand-Off Weapon (JSOW-C1) discovered weapon integration, Pilot Vehicle Interface (PVI) and mission planning problems that will prevent full Block 3F combat capability from being delivered, if not corrected. These discoveries were made too late to be included in the Block 3FR6 software, the final planned increment of capability delivered to flight test for SDD. Also, multiple changes are being made late in Block 3F development to mission systems fire control software to correct problems with the British AIM-132 Advanced Short-Range Air-to-Air Missile (ASRAAM) missile and Paveway IV bomb, changes which could affect the U.S. AIM-9X air-to-air missile and GBU-31 laser-guided bomb capabilities, and may require regression testing of the U.S. weapons.

- Block 3F adds gun capability for all variants. The F-35A gun is internal; the F-35B and F-35C each use a gun pod. Ground firing tests have been completed on all variants; only on the F-35A has initial flight testing of the gun been accomplished. Early testing of the air-to-ground and air-to-air symbolics have led to discovery of deficiencies in the gunsight and strafing symbology displayed in the pilot’s helmet – deficiencies which may need to be addressed before accuracy testing of the gun, aimed by the HMDS, can be completed. Because of the late testing of the gun and the likelihood of additional discoveries, the program’s ability to deliver gun capability with Block 3F before IOT&E is at risk, especially for the F-35B and F-35C.

Pilot Escape System

- The program completed pilot escape system qualification testing in September 2016, which included a set of modifications designed to reduce risk to pilots weighing less than 136 pounds.
 - Modifications include:
 - Reduction in the weight of the pilot’s Generation III Helmet Mounted Display System (HMDS), referred to as the Gen III Lite HMDS
 - Installation of a switch on the ejection seat which allows lighter-weight pilots to select a slight delay in the activation of the main parachute
 - Addition of a Head Support Panel (HSP) between the risers of the parachute.

- These modifications to the pilot escape system were needed after testing in CY15 showed that the risk of serious injury or death is greater for lighter-weight pilots. Because of the risk, the Services decided to restrict pilots weighing less than 136 pounds from flying the F-35.
FY16 DOD PROGRAMS

- Twenty-two qualification test cases were completed between October 2015 and September 2016, with variations in manikin weight, speed, altitude, helmet size, and seat configuration, and seat switch setting. Data from tests showed that the HSP significantly reduced neck loads under conditions that forced the head backwards, inducing a rearward neck rotation, during the ejection sequence. Data also showed that the seat switch reduced the "opening shock" by slightly delaying the main parachute for lighter-weight pilots at speeds greater than 160 knots. The extent to which the risk has been reduced for lighter-weight pilots (i.e., less than 136 pounds) by the modifications to the escape system and helmet is still to be determined by a safety analysis of the test data. If the Services accept the risk associated with the modifications to the escape system for the lighter-weight pilots, restrictions will likely remain in effect until aircraft have the modified seat and the HSPs, and until the lighter-weight Gen III Lite helmets are procured and delivered to the applicable pilots.

- Based on schedules for planned seat modifications, production cut-in of the modified seat, and the planned delivery of the Gen III Lite HMDS, the Air Force may be able to reopen F-35 pilot training to lighter-weight pilots (i.e., below 136 pounds) in early 2018. DOT&E is not aware of the plans for the Marine Corps and the U.S. Navy to open F-35 pilot training to the lighter-weight pilots.

- Part of the weight reduction to the Gen III Lite HMDS involved removing one of the two installed visors (one dark, one clear). As a result, pilots that will need to use both visors during a mission (e.g., during transitions from daytime to nighttime) will have to store the second visor in the cockpit. However, there currently is not enough storage space in the cockpit for the spare visor, so the program is working a solution to address this problem.

- The program has yet to complete the additional testing and analysis needed to determine the risk of pilots being harmed by the Transparency Removal System (which shatters the canopy first, allowing the seat and pilot to leave the aircraft) during off-nominal ejections in other than ideal, stable conditions (such as after battle damage or during out-of-control situations). Although the program completed an off-nominal rocket sled test with the Transparency Removal System in CY12, several aspects of the escape system have changed since then (including significant changes to the helmet) which warrant additional testing and analyses.

Joint Simulation Environment (JSE)

- JSE is a man-in-the-loop, F-35 mission systems software-in- the-loop simulation being developed to meet the operational test requirements for Block 3F IOT&E. However, multiple aspects of the JSE development effort continue to fall significantly behind schedule. The Program Office has been negotiating with the contractor to receive the F-35 aircraft and sensor models, referred to as “F-35 In A Box (IAB),” but very limited progress was made in CY16. Also, delays with security clearances for new personnel limited progress on several aspects of the development and validation effort. Although the Naval Air Systems Command (NAVAIR) government team has begun installing hardware on their planned timeline (facilities, cockpits, etc.), the team’s progress in integrating the many different models (i.e., multi-spectral environment, threats, weapons) with F-35 IAB has been severely limited, and the verification, validation and accreditation of these models within JSE for use in IOT&E, have effectively stalled. The F-35 program’s JSE schedule indicates that it plans to provide a fully accredited simulation for IOT&E use in May 2019; a schedule that carries high risk of further slips without resolving these issues, and is not credible. Without a high-fidelity simulation, the F-35 IOT&E will not be able to test the F-35’s full capabilities against the full range of required threats and scenarios. However, for the reasons above, it is now clear that the JSE will not be available and accredited in time to support the Block 3F IOT&E. Therefore, the recently approved IOT&E detailed test design assumes only open-air flight testing will be possible and attempts to mitigate the lack of an adequate simulation environment as much as possible. In the unlikely event the JSE is ready and accredited in time for IOT&E, the test design has JSE scenarios that would be conducted.

Live Fire Test and Evaluation (LFT&E)

- The F-35 LFT&E program completed one major live fire test series using an F-35C variant full-scale structural test article (CG:0001). Preliminary test data analyses:
 - Demonstrated the tolerance of the vertical tail attachments to high-explosive incendiary (HEI) projectile threats
 - Confirmed the tolerance of the aft boom structures to Man-Portable Air Defense System (MANPADS) threats
 - Demonstrated vulnerabilities to MANPADS-generated fires in engine systems and aft fuel tanks. The data will support a detailed assessment in 2017 of these contributions to overall F-35 vulnerability.

- The test plan to assess chemical and biological decontamination of pilot protective equipment is not adequate; no plans have been made to test either the Gen II or the Gen III HMDS. The Program Office is on track to evaluate the chemical and biological agent protection and decontamination systems in the full-up system-level decontamination testing in FY17.

- The Navy conducted vulnerability testing of the F-35B electrical and mission systems to electromagnetic pulses (EMP).

- The 780th Test Squadron at Eglin AFB, Florida completed ground-based lethality tests of the PGU-47/U Armor Piercing High Explosive Incendiary with Tracer (APHEI-T) round, also known as the Armor Piercing with Explosive (APEX), against armored and technical vehicles, aircraft, and personnel-in-the-open targets.

Suitability

- The operational suitability of all variants continues to be less than desired by the Services. Operational and training
units must rely on contractor support and workarounds that would be challenging to employ during combat operations. In the past year some metrics of suitability performance have shown improvement, while others have been flat or declined.

- Most metrics still remain below interim goals to achieve acceptable suitability by the time the fleet accrues 200,000 flight hours, the benchmark set by the program and defined in the Operational Requirements Document (ORD) for the aircraft to meet reliability and maintainability requirements.

- Reliability growth has stagnated and, as a result, it is highly unlikely that the program will achieve the ORD threshold requirements at maturity for the majority of reliability metrics, most notably Mean Flight Hours Between Critical Failures, without redesigning components of the aircraft.

Autonomic Logistics Information System

- The program failed to release any new ALIS capability in 2016, but did release two updates to the currently fielded ALIS 2.0.1 software to address deficiencies and usability shortfalls. The program planned to test and field ALIS 2.0.2, including integration of propulsion data management, in the summer of 2016, to support the Air Force declaration of Initial Operational Capability; however, delays in development and integration have pushed the testing and fielding into 2017.

- Because of the delays with ALIS 2.0.2, Lockheed Martin shifted personnel to support that product line development. This caused delays in the development schedule of ALIS 3.0, the last major SDD software release. The program acknowledged in August 2016 that it could not execute the ALIS 3.0 schedule and developed plans to restructure this ALIS release and the remaining planned ALIS capabilities into multiple releases, including some that will occur after SDD completion.

- The program’s restructuring of the ALIS capability delivery plan divided the planned capabilities and security updates for ALIS into four more versions: one version for SDD (ALIS 3.0), with what the Program Office considered to be needed for IOT&E, and three additional software releases intended to be fielded at 6-month intervals after SDD completion, with the remaining content originally planned for ALIS 3.0.

- The program plans to release software maintenance updates midway between each of these four software releases to address deficiencies and usability problems, but these releases will not include new capabilities.

- The Air Force completed its first deployment of F-35A aircraft using the modularized version of the ALIS squadron hardware, called the Standard Operating Unit Version 2 (SOU v2), and software release 2.0.1 to Mountain Home AFB, Idaho in February 2016. Difficulties integrating the SOU v2 into the base network interfered with connectivity between the SOU v2 and the Mountain Home-provided workstations, but did not affect connectivity of the SOU v2 with the main Autonomic Logistics Operating Unit (ALOU) in Fort Worth, Texas.

Air-Ship Integration and Ship Suitability

- The program completed the last two ship integration DT periods in 2016 – both referred to as “DT-III” – one with the F-35B in November aboard the amphibious assault ship USS America, and one with the F-35C in August aboard the aircraft carrier USS George Washington. Test objectives included expanding the flight clearances for shipboard operations with carriage of external weapons, night operations, and Joint Precision Approach Landing System (JPALS) integration testing. For both periods, operational and test units accompanied the deployment to develop concepts of operations for at-sea periods.

- The specialized secure space set aside for F-35-specific mission planning and the required Offboard Mission Support (OMS) workstations is likely unsuitable for regular Air Combat Element (ACE) operations on the Landing Helicopter Dock (LHD) and Landing Helicopter Assault (LHA)-class assault ships with the standard complement of six F-35B aircraft, let alone F-35B Heavy ACE configurations with more aircraft. Similarly, for F-35C operations onboard CVN, adequate secure spaces will be needed to ensure planning and debriefing timelines support carrier operations.

- The F-35C DT-III included external stores, including bombs, but only pylons with no AIM-9X missiles on the outboard stations (stations 1 and 11) due to the F-35C wingtip structural deficiency. The U.S. Navy directed a proof-of-concept demonstration of an F-35C engine change while underway, a process that took several days to complete. ALIS was not installed on USS George Washington, so reach-back via satellite link to the shore-based ALIS unit was required, similar to previous F-35C test periods at sea, but connectivity proved troublesome.

- The F-35B DT-III deployment included an engine installation due to required maintenance, along with a lift fan change proof-of-concept demonstration. The Marine Corps deployed with an operational SOU v2 on USS America.

Cybersecurity Testing

- The JSF Operational Test Team (JOTT) continued to conduct cybersecurity testing on F-35 systems, in partnership with certified cybersecurity test organizations and personnel, and in accordance with the cybersecurity strategy approved by DOT&E in February 2015. In 2016, the JOTT conducted adversarial assessments (AA) of the ALIS 2.0.1 SOU, also known as the Squadron Kit, at Marine Corps Air Station (MCAS) Yuma, Arizona, and the Central Point of Entry (CPE) at Eglin AFB, Florida, completing testing that began in the Fall of 2015. They also completed cooperative vulnerability and penetration assessments (CVPA) of the mission systems ALOU at Edwards AFB, California, used to support developmental testing, and the operational ALOU in Fort Worth, Texas. The JOTT, with support from the
Air Force Research Laboratory (AFRL) also completed a limited cybersecurity assessment of the F-35 air vehicle in September 2016, on an F-35A aircraft assigned to the operational test squadron at Edwards AFB. These tests were not conducted concurrently as originally planned, so end-to-end testing of ALIS, from the ALOU to the air vehicle, has not yet been accomplished. An AA of the operational ALOU was scheduled for early December 2016, which would complete a full assessment (CVPA and AA) of each ALIS 2.0.1 component.

- The cybersecurity testing in 2016 showed that the program has addressed some of the vulnerabilities identified during earlier testing periods; however, much more testing is needed to assess the cybersecurity structure of the air vehicle and supporting logistics infrastructure system (i.e., ALOU, CPE, Squadron Kit) and to determine whether, and to what extent, vulnerabilities may have led to compromises of F-35 data. The scope of the cybersecurity testing must also expand to include other systems required to support the fielded aircraft, including the Multifunction Analyzer Transmitter Receiver Interface Exerciser (MATRIX) system which is used by contractor maintenance technicians, the USRL, avionics integration labs, the OMS and training simulators.

Follow-on Modernization
- The program continued making plans for Follow-on Modernization (FoM) for all variants, also referred to as Block 4, which is on DOT&E oversight. The program intends to award the contract for the modernization effort in 2QCY18 with developmental flight testing beginning in 3QCY19. Four increments of capability are planned, Blocks 4.1 through 4.4. Blocks 4.1 and 4.3 will provide software-only updates; Blocks 4.2 and 4.4 will include significant avionics hardware changes as well as software updates. Improved Technical Refresh 3 (TR3) processors with open architecture, designed to make adding, upgrading and replacing components easier, are planned to be added in Block 4.2.
- The program’s plans for FoM are not executable for a number of reasons including, but not limited to the following:
 - Too much technical content for the production-schedule-driven developmental timeline
 - Overlapping increments without enough time for corrections to deficiencies from OT to be included in the next increment
 - High risk due to excessive technical debt and deficiencies from the balance of SDD and IOT&E being carried forward into FoM because the program does not have a plan or funding to resolve key deficiencies from SDD prior to attempting to add the planned Block 4.1 capabilities
 - Inadequate test infrastructure (aircraft, laboratories, personnel) to meet the testing demands of the capabilities planned and the multiple configurations (i.e., TR2, TR3, and Foreign Military Sales)
- Insufficient resources for conducting realistic operational testing of each increment

System
- The F-35 Joint Strike Fighter (JSF) program is a tri-Service, multi-national, single-seat, single-engine family of strike aircraft consisting of three variants:
 - F-35A Conventional Take-Off and Landing (CTOL)
 - F-35B Short Take-Off/Vertical-Landing (STOVL)
 - F-35C Aircraft Carrier Variant (CV)
- The F-35 is designed to survive in an advanced threat environment (year 2015 and beyond) using numerous advanced capabilities. It is also designed to have improved lethality in this environment compared to legacy multi-role aircraft.
- Using an active electronically scanned array (AESA) radar and other sensors, the F-35 with Block 3F is intended to employ precision-guided weapons, such as the GBU-12 Laser-Guided Bomb (LGB), GBU-31/32 Joint Direct Attack Munition (JDAM), GBU-39 Small Diameter Bomb (SDB), Navy Joint Stand-Off Weapon (JSOW)-C1, and air-to-air missiles such as AIM-120C Advanced Medium-Range Air-to-Air Missile (AMRAAM), and AIM-9X infrared guided short-range air-to-air missile.
- The SDD program was designed to provide mission capability in three increments:
 - Block 1 (initial training; two increments were fielded: Blocks 1A and 1B)
 - Block 2 (advanced training in Block 2A and limited combat capability in Block 2B)
 - Block 3 (limited combat capability in Block 3i and full SDD warfighting capability in Block 3F)
- The F-35 is under development by a partnership of countries: the United States, Great Britain, Italy, the Netherlands, Turkey, Canada, Australia, Denmark, and Norway.

Mission
- The Combatant Commander will employ units equipped with F-35 aircraft in joint operations to attack targets during day or night, in all weather conditions, and in heavily defended areas.
- The F-35 will be used to attack fixed and mobile land targets, surface units at sea, and air threats, including advanced aircraft and cruise missiles.

Major Contractor
Lockheed Martin, Aeronautics Division – Fort Worth, Texas
Test Strategy, Planning, and Resourcing

- Preparations for IOT&E. In 2016, the JPO acknowledged schedule pressure for starting IOT&E in August 2017, as planned in the Integrated Master Schedule created in 2012. Due to multiple problems and further delays, the program will not be able to start IOT&E until late CY18, at the earliest, and more likely early CY19, but it could be as late as CY20 before required modifications are completed to IOT&E aircraft. The issues that will not allow IOT&E to start as planned include:
 - Continued schedule delays in completing Block 3F mission systems development and flight testing
 - The program’s plan to deliver the “Full SDD Warfighting Capability” version of Block 3F software – now referred to as version 3FR6 – was significantly delayed. It was planned for release to flight test in February 2016, according to the program’s latest mission systems software and capability release schedule, but did not begin flight test until early December 2016 (10 months late). However, during this time, the program released several “Quick Reaction Cycle” (QRC) versions of software to quickly resolve deficiencies that were preventing the completion of key test points, like weapons deliveries. Due to these delays, along with the recently acknowledged SDD funding shortfall, software versions 3FR7 and 3FR8 have fallen off the program’s schedule. However, ongoing delays in maturing some of the capabilities and new problem discoveries continue to prevent testing of some planned Block 3F capabilities and will almost certainly require additional unplanned releases of Block 3F software.
 - DOT&E estimates that mission systems flight testing will not complete prior to July 2018, based on the number of Block 3F baseline mission systems test points to go, the monthly average mission systems test point completion rate observed for CY16 to date, and the average regression, discovery and developmental test point rate of 63 percent experienced so far in CY16. This estimate also includes a decrement of 11 percent for test points to be designated “no longer required,” the percentage used by the Program Office to account for efficiency in CY16 planning of test point accomplishment objectives.
 - Delayed and incomplete Block 3F developmental testing Weapons Delivery Accuracy (WDA) events and ongoing weapons integration issues
 - WDA events – key developmental test activities necessary to ensure the full fire-control capabilities work together to properly support the “find, fix, track, target, engage, assess” kill chain – are not complete. As of the end of November, only 5 of the 26 WDA events (excluding gun events) had been completed and fully analyzed.
 - Several WDAs have revealed deficiencies and limitations to weapons employment (e.g., AIM-9X seeker status tone problems and out-of-date launch zones for AIM-120 missiles). An additional 11 WDAs had occurred, but analyses are ongoing. Of the 10 remaining WDAs, 4 were still blocked due to open deficiencies that must be corrected before the WDA can be attempted, but the program did not have time to complete and analyze them before finalizing Block 3FR6.
 - Continued delays in completing flight sciences test points, particularly those needed to provide the F-35B Block 3F flight envelope for operational use
 - Through the end of November, flight sciences testing on all variants was behind the plan for the year. Although the program planned to complete Block 3F testing on the F-35A in October, testing continued into December, with weapons separations and regression testing of new software to be completed.
 - Flight sciences test point completion for CY16 was 5 percent behind for the F-35B and 23 percent behind for the F-35C as of the end of November. The program plans to complete Block 3F flight sciences testing in August 2017 with the F-35C and by the end of October 2017 with the F-35B, the latter being 10 months later than planned in the program’s Integrated Master Schedule.
 - Due to the delays with completing flight sciences testing, the program plans a phased release of the Block 3F envelope across all three variants, with the full Block 3F envelope for the F-35B not being released until mid-CY18.
 - Further delays in completing gun testing for all three variants and recently discovered gunsight deficiencies
 - Block 3F adds gun capability for all three variants. The F-35A gun is internal; the F-35B and F-35C each use a gun pod. Differences in mounting make the gun pods unique to a specific variant, i.e., a gun pod designated for an F-35B cannot be mounted on an F-35C aircraft. Flight sciences testing of the gun has occurred with the F-35A; discoveries required control law changes to the flight control software and delayed the start of mission systems gun testing on the F-35A from September 2016 to December 2016. Although the F-35B and F-35C have completed ground firings of their gun pods, airborne flight sciences gun testing (i.e., airborne firing) for the F-35B and F-35C has yet to be accomplished.
 - Besides the ongoing delays with software and gun modifications, both DT and OT pilots have reported concerns from preliminary test flights that the air-to-ground gun strafing symbology, displayed in the helmet, is currently operationally unusable and potentially unsafe to complete the planned testing due to a combination of symbol clutter obscuring the target, difficulty reading key information, and piperperp stability. Also, for air-to-air employment, the piperperp symbology is very unstable while tracking a target aircraft; however, the funnel version of the air-to-air gunsight appears to be more stable in early testing.
 - Fixing these deficiencies may require changes to the mission systems software that controls symbology
to the helmet, or the radar software, even though the program recently released the final planned version of flight test software, Block 3FR6. Plans to begin flight testing of aimed gunshots, integrated with mission systems, which requires aiming with the helmet, on the F-35A were planned for fall of 2016, but had slipped to December 2016, at the soonest, before this new problem with the gun symbology was discovered.

- F-35B ground test firing of its gun pod was accomplished in July 2016 and flight testing is planned to begin in January 2017; the F-35C conducted first ground firing in November 2016; flight testing is planned to begin in March 2017.
- Late availability of verified, validated and tested Block 3F MDLs
 - Failure by the program to plan for, procure, and provide the necessary Block 3F upgrades and the associated Mission Data File Generation (MDFG) tools to the USRL has caused delays in developing, testing, and verifying mission data loads for IOT&E.
 - If Block 3F MDFG tools are delivered in early CY17, verified, validated and tested MDLs will not be available for IOT&E until June 2018 (15 months later) at the soonest, which is late to need for both IOT&E and fielding of Block 3F.
 - In collaboration with partner nations, the program is developing multiple laboratories to produce MDLs tailored for country-unique requirements. Although these other laboratories may provide additional capacity for developing and testing MDLs, the MDL that will be used for IOT&E must be developed, verified, validated, and tested using operationally representative procedures involving the USRL.
- Continued shortfalls and delays with ALIS and late delivery of ALIS version 3.0, the final planned version for SDD, which is at risk of slipping from early-CY18 into mid-CY18
 - The program has failed to deliver increments of ALIS capability as planned. No new capability has completed testing in 2016, although the program had planned to field ALIS 2.0.2, with the propulsion integration module included, by August 2016 to support the Air Force IOC declaration, but continued problems caused this to slip into early CY17.
 - The program restructured the ALIS capabilities delivery plan in 2016 and moved content planned for ALIS 3.0 – the last version to be developed during SDD – to post-SDD ALIS development and fielding. Despite the delays and deferred content, IOT&E will still evaluate the suitability of the F-35 with ALIS in operationally realistic conditions.
 - Significant, well-documented deficiencies resulting in overall ineffective operational performance of Block 3F, hundreds of which will not be adequately addressed with fixes and corrections verified with flight testing within SDD
- The program, Services, JOTT, and DT and OT pilots recently conducted a review of the status and priority of open deficiency reports (DRs). This review was a follow-on from a review in the spring of 2016, where the stakeholders reviewed all the open DRs and created a rank-ordered list of 263 priority deficiencies to be addressed by the program. The review team later pared the list down to 176 priority DRs, with 12 being brought forward to the JPO’s Configuration Steering Board (CSB); 7 for decision and 5 for CSB awareness. In the review in the fall of 2016, the stakeholders reviewed the approximately 1,200 open deficiencies, including the original 176 priority DRs, plus 231 new DRs since Feb 2016, minus 55 that had been corrected, to create an updated DR list. This time, however, the team prioritized the open DRs into one of 4 priorities: priority 1 DRs are “service critical,” and the Services will not field the aircraft unless these DRs are fixed; priority 2 have significant impact that may, when combined with other DRs, lead to mission failure; priority 3 carry medium impact and should be addressed by the program, but maybe not within SDD; and priority 4 have low impact. The review team identified 72 DRs as priority 1 and 204 DRs as priority 2, for a total of 276 DRs to address within SDD or risk fielding deficiencies that could lead to operational mission failures during IOT&E or combat.
- While these deficiencies must be addressed to some degree during the remaining time in development, the final planned software load, Block 3FR6, which started flight test in December 2016, only included attempted fixes for less than half of the 276 priority 1 and 2 DRs. Corrections to these deficiencies will need to be developed, tested in the labs (if possible) and then flight tested, since the labs have proven to not be an adequate test venue for verifying corrections to deficiencies identified during flight testing. However, the current schedule-driven program plans to close out SDD testing in 2017 do not include enough time to fix these key deficiencies, nor time to verify corrections in flight test. There is risk in attempting to verify DR fixes only in the lab because the labs proved to not always be representative of the actual aircraft for detecting problems or verifying fixes for stability problems. The labs are also not able to adequately replicate the demands on the mission systems like open air testing does, such as infrared and radar background clutter and terrain-driven multipath reflections of radio-frequency emissions from threat emitters, so most fixes to deficiencies will require flight testing.
- Overall ineffective operational performance with multiple key Block 3F capabilities to date
 - Three independent assessments conducted during the past 6 months rate the F-35 as red or unacceptable (not all assessments used the same scoring criteria) in most critical combat mission areas: The Air Force’s IOC Readiness Assessment (IRA) of Block 3i, an OT
community assessment of Block 3FR5.03 based on observing developmental testing, and an assessment by the JOTT of the capability of Block 3FR5.05 to perform the planned mission trials in the IOT&E, based on observing and assisting with DT.

- In July, the Air Force completed their IRA report. The assessment was based on a limited series of events conducted with six Block 3i-configured aircraft, including test missions in Close Air Support (CAS), Air Interdiction (AI), and Suppression/Destruction of Enemy Air Defenses (SEAD/DEAD). The assessment noted unacceptable problems in fusion and electronic warfare and, concerning the CAS mission, determined that the Block 3i F-35A does not yet demonstrate equivalent CAS capabilities to those of fourth generation aircraft.

- In August, an F-35 OT pilot from Edwards AFB, California, briefed the results of an OT community assessment of F-35 mission capability with Block 3FR5.03, based on observing developmental flight test missions and results to date. This OT assessment rated all IOT&E mission areas as “red,” including CAS, SEAD/DEAD, Offensive Counter Air (OCA) and Defensive Counter Air (DCA), AI, and Surface Warfare (SuW). Several DT Integrated Product Team representatives also briefed the status of different F-35 mission systems capabilities, most of which were rated “red,” and not meeting the entrance criteria to enter the “graduation level” mission effectiveness testing. Trend items from both the OT and IPT briefings were limitations and problems with multiple Block 3F system modes and capabilities, including Electro-Optical Targeting System (EOTS), Distributed Aperture System (DAS), radar, electronic warfare, avionics fusion, identification capabilities, navigation accuracy, GPS, datalinks, weapons integration and mission planning.

- In November 2016, the JOTT provided an assessment of a later version of Block 3F software – version 3FR5.05 – based on observing and assisting with F-35 DT flight operations and maintenance. The JOTT assessment made top-level, initial predictions of expected IOT&E results of the F-35 with Block 3FR5.05 against planned scenarios and realistic threats. For mission effectiveness, the assessment predicted severe or substantial operational impacts across all the planned IOT&E missions (similar to the list of missions above) due to observed shortfalls in capabilities, with the exception of the Reconnaissance mission area, which predicted minimal operational impact. Unlike the other assessments, the JOTT also assessed suitability, predicting mixed operational impacts due to shortfalls for deployability (from minimal to severe), severe impacts for mission generation, and substantial impacts for training and logistics support.

- Continued low aircraft availability, especially for the early production lot IOT&E aircraft. The program has still not been able to improve aircraft availability, in spite of reliability and maintainability initiatives, to the goal of 60 percent, which is well short of the 80 percent necessary to conduct an efficient IOT&E and to support sustained combat operations. As a result, IOT&E will likely take longer than currently planned and suitability, along with fielded operations, will be adversely affected.

- Late delivery of the JSE, a man-in-the-loop simulator expected for IOT&E, which required the test team to create a test design that attempts to mitigate the high likelihood that it will not be available. Some IOT&E measures of effectiveness will not be fully resolved without a verified, validated and accredited simulator to evaluate the F-35 in an operationally realistic, dense threat environment.

- Progress in verification of Joint Technical Data (JTD) is behind plans to complete within SDD, particularly those for troubleshooting aircraft fault codes and for support equipment. As of September 2016, the program had verified approximately 83 percent of all JTD modules, but just over 50 percent of those associated with support equipment. While symptomatic of an immature system, the lack of verified JTD makes the completion of aircraft maintenance more difficult and forces maintainers to rely more heavily on submitting electronic requests to the contractor for help or to seek assistance from contractor representatives at field locations.

- The program has made significant progress in verifying JTD for sustaining the aircraft’s low observable signature, primarily by completing verifications on an F-35A damaged in 2014 by an engine fire.

- All Block 3F JTD must be written and verified prior to the start of IOT&E.

- Delays in completing the extensive and time-consuming modifications required to the fleet of operational test aircraft which, if not mitigated with an executable plan and contract, could significantly delay the start of IOT&E.

- The program is developing and working plans with Lockheed Martin and the Services to provide production-representative operational test aircraft, with the necessary instrumentation, to start IOT&E. Although it was part of the agreed-to entrance criteria for IOT&E, the program currently does not have an adequate plan to provide test aircraft that meet the TEMP criteria for entering IOT&E until late-2018, at the earliest, and possibly as late as 2020. Extensive modifications are required on all of the TEMP-designated OT aircraft; 155 different modifications (known to date) are necessary between all variants and all lots of aircraft (Lots 3 through 5) to bring the IOT&E aircraft to the required production-representative configuration, although no single aircraft requires all 155 modifications. Additional discoveries and modifications are likely as the program finishes SDD.

- The Program Office and the Services are considering using later lot aircraft with an alternate instrumentation package. However, to date, no analyses of the adequacy of the alternate instrumentation has been completed; nor is there a contract to design, build and test alternative packages.

- Insufficient progress in the development and testing of modeling, simulations, and instrumentation required for IOT&E.
FY16 DOD PROGRAMS

- Flight testing to allow the Data Acquisition Recording and Telemetry (DART) pod to be used throughout the full Block 3F flight envelope during IOT&E, including during simulated weapons releases when the weapons bay doors will cycle open, has not yet been planned, put on contract or completed. The DART pod is required for collecting data during IOT&E.

- Flight testing of the Air-to-Air Range Infrastructure (AARI) – as integrated with the F-35 and required for adequacy of the open air flight test trials – has not yet been completed. AARI is used to support battle-shaping of air-to-air engagements by modeling weapon fly-outs and accounting for endgame effects to remove aircraft “shot down” by another aircraft or ground threat. The program must begin testing AARI and allow for corrections of deficiencies during flight testing, to ensure AARI is adequate for IOT&E.

- Integration of AARI and associated range simulators with the F-35 to indicate inbound missiles on cockpit displays is required for an adequate evaluation of open air missions. Within the aircraft, the Embedded Training (ET) function is intended to support live/virtual/constructive training using a mixture of real and virtual entities (e.g., missiles, ground systems, and aircraft). To avoid intermingling data from real and virtual entities, as it may cause issues within the F-35, the contractor developed a separate model, the Fusion Simulation Model (FSM), to emulate fusion functionality for virtual entities within ET. The current FSM implementation has significant deficiencies that make the model so inaccurate that some required capabilities may not be usable for IOT&E. Although a properly functioning FSM is required for IOT&E, the program had not yet completed contract actions for fixes to correct the FSM deficiencies within SDD and prior to IOT&E, but was apparently developing plans and intended to award contract actions for at least some of the work on FSM by the end of January 2017.

- Virtual Threat Insertion (VTI) is a function inside of FSM that correlates virtual threat parametric data supplied by AARI with data from tables embedded within the FSM to provide cockpit display indications to the pilot for threat activity (i.e., a surface-to-air missile launched). The reference tables for VTI are incomplete and do not include all threats planned for use in IOT&E. The program was also apparently planning to update the VTI tables, but this was also not yet on contract.

- The Logistics Composite Model (LCOM), which will be used to support assessments of suitability measures including sortie generation rate and logistics footprint – two key performance parameters in the ORD – is still under development. Seven versions of the model will be needed to cover the three variants as well as partner-unique and shipborne operations.

- The program is behind in developing and fielding training simulators, referred to as F-35 Full Mission Simulators (FMS), to train pilots, both at the integrated training centers for initial F-35 pilot training and at the operational locations. The FMS is a multi-ship, man-in-the-loop, F-35 mission systems software-in-the-loop simulation using virtual threats, it is used to train both U.S. and partner pilots.

- In 2014, the program moved simulator development from Akron, Ohio to Orlando, Florida. As a result of the move, the program lost experienced personnel, suffered from shortfalls in required staffing, and fell behind in meeting the hardware and software demands of the rapidly growing pilot training requirements.

- In March 2016, following an inspection of the Block 2B FMS, evaluators reported 203 test discrepancies; 173 remained open, 4 were canceled, 2 were pending corrections, and 24 had been closed and corrections included in the next build of FMS for Block 3i.

- The Block 3i FMS is behind the planned schedule for fielding. The first Block 3i FMS is scheduled for delivery to Marine Corps Air Station Iwakuni, Japan, in December 2016, followed by two more FMS delivered to partner countries.

- Because of delays in delivering the Block 3i FMS, the Block 3F FMS is even further behind schedule. Although earlier plans included delivering the Block 3F FMS in CY17, the program is now replanning the schedule.

- Since the FMS runs F-35 mission systems software, it requires Block 3F mission data files, integrated with virtual threats, to build the threat environment simulation (TES). It currently takes up to 20 months for the program to build the TES after new mission data files are available, hence pilots will not have Block 3F FMS, with the USRL-produced mission data files, available for training prior to IOT&E. Alternatively, the program may elect to use the contractor-developed DT mission data files for the Block 3F FMS. However, doing so would make the training in the FMS not operationally representative, as those mission data files do not accurately portray the TES to the pilot. Without an adequate Block 3F FMS, the OT pilots will have to rely on the available Block 3F OT aircraft for training.

- The JOTT completed detailed test designs for accomplishing IOT&E. DOT&E approved the designs in August 2016. The test designs include comparisons of the F-35 with the A-10 in the Close Air Support role, the F-16C (Block 50) in the Suppression/Destruction of Enemy Air Defenses (SEAD/DEAD) mission area, and the F-18E/F in the air-to-surface strike mission area. The JOTT has begun detailed test planning based on these designs, and will provide these plans to DOT&E for approval, prior to the start of IOT&E.

- Block Buy. The program and Services continue to pursue a “Block Buy” for production lots 12 through 14. This multi-year procurement scheme is based on a partial group of the partner nations, designated as “Full Participants,” funding a 2 percent Economic Order Quantity (EOQ) in FY17 and another 2 percent EOQ in FY18. Other partner nations,
designated “Partial Participants,” would procure Lot 12 as a single year lot procurement, then commit to procuring Lots 13 and 14 as a part of the Block Buy and provide funding of 4 percent EOQ in FY18. Similar to the Partial Participants, the Services would procure Lot 12 as a single year procurement and fund 4 percent EOQ in FY18, but maintain the options for single year procurements in Lots 13 and 14. Altogether, 452 F-35 aircraft would be procured under the Block Buy scheme, on top of the 490 aircraft (346 for the U.S. Services) previously procured in lots 1-11, all purchased without the informed results of an IOT&E. As reported in the FY15 DOT&E Annual Report, many questions remain on the prudence of committing to the multi-year procurement of a Block Buy scheme prior to the completion of IOT&E:

- Is the F-35 program sufficiently mature to commit to the Block Buy with the ongoing rate of discovery while in development?
- Is it appropriate to commit to a Block Buy given that essentially all the aircraft procured thus far require modifications to be used in combat? The Services will have accepted delivery of 346 aircraft through Lot 11, before the additional aircraft are purchased via the Block Buy scheme.
- Would committing to a Block Buy prior to the completion of IOT&E provide the contractor with needed incentives to fix the problems already discovered, as well as those certain to be discovered during IOT&E?
- Would the Block Buy be consistent with the “fly before you buy” approach to acquisition advocated by the Administration, as well as with the rationale for the operational testing requirements specified in title 10, U.S. Code, or would it be considered a “full rate” decision before IOT&E is completed and reported to Congress, not consistent with the law?

Follow-on Modernization (FoM). The program continued making plans for all variants for FoM, also referred to as Block 4, which is on DOT&E oversight. The program intends to award the contract for the modernization effort in 2QCY18 with developmental flight testing beginning 3QCY19. Four increments of capability are planned, Blocks 4.1 through 4.4. Blocks 4.1 and 4.3 will provide software-only updates, Blocks 4.2 and 4.4 will add hardware as well as software updates. Improved Technical Refresh 3 (TR3) processors are planned to be added in Block 4.2. However, the plans for FoM are not executable for a number of reasons including, but not limited to, the following:

- Too much technical content for the allocated developmental timeline. Experience with the F-22 modernization program indicates the planned 18- to 24-month cycle for FoM is insufficient for the large number of planned additional capabilities; the F-22 increments had less content plus software maintenance releases between new capability releases.
- High risk of carrying excessive technical debt and deficiencies from Block 3F and the balance of SDD into FoM. The planned 4-year gap between the planned final release of Blocks 3F in 2017 and Block 4.1 in 2021 lacks resources (i.e., funding and time) for a bridge software maintenance release to reduce technical debt and verify Block 3F IOT&E corrections of deficiencies. Although the unresolved technical debt is an SDD shortfall, it sets up FoM to fail due to unrealistic planning and inadequate resourcing.
- Insufficient time for conducting adequate operational testing for each increment.
 • The current plan for F-35 Block 4.2 only has 18 months for DT flight test and 6 months for OT&E, despite containing substantially more new capabilities and weapons than F-22 Block 3.2B.
 • For comparison, the F-22 Block 3.2B program planned approximately two years for DT flight test and one year of OT&E spin-up and flight test; F-22 Blocks 3.1, 3.2A and 3.2B have suffered delays and problems accomplishing testing due to inadequate test resources and schedule.
- Inadequate test infrastructure (aircraft, laboratories, personnel) to meet the testing demands of the capabilities planned.
 • The current end-of-SDD developmental test aircraft drawdown plan is still being developed. However, any plan that significantly reduces the F-35 test force in 2017 and 2018 – precisely when the program needs this test force to finish the delayed SDD Block 3F Joint Test Plan (JTP) and correct remaining deficiencies with additional Block 3F updates in preparation for IOT&E – would result in shortfalls of the necessary resources to provide full Block 3F capability.
 • A robust test force will also be required to be available through 2020 to correct the inevitable new discoveries from IOT&E and produce a final Block 3F software release that provides a stable foundation for adding the new Block 4.1 capabilities.
- The program plans to award contracts to start simultaneous development of Blocks 4.1 and 4.2 in 2018, well prior to completion of IOT&E and having a full understanding of the deficiencies that will emerge from IOT&E; without any budget or time to fix deficiencies from earlier development.
- The requirement to integrate and test multiple configurations simultaneously (TR2 and TR3) will require additional time, test aircraft, and lab resources; a problem that must be addressed as the program considers plans for the fleet of test aircraft for FoM.
- As of the writing of this report, the program’s published FoM plan would have reduced test infrastructure from 18 DT aircraft and 1,768 personnel, which are still heavily tasked to complete ongoing Block 3F development, to just 9 aircraft and approximately 600 personnel to support FoM. Clearly, this plan is grossly inadequate. However, the program and Services were in the process of replanning the test infrastructure for FoM and had not yet provided the results.
FY16 DOD PROGRAMS

- Both the Air Force and the Navy conducted independent studies in 2016 to determine what infrastructure and test periods for FoM would be adequate. Neither report had been released as of the time of this report. DOT&E has requested to see the preliminary results of the Air Force study, but the Air Force has refused to provide them, citing the fact that the results are not final and the report is in draft.
- Significant technical and schedule risk due to Block 4.1 adding new capabilities to the already-stretched TR2 avionics hardware, along with Block 4.2 attempting to simultaneously migrate to a new open-architecture TR3 processor while adding many significant new capabilities.
- For Block 4.1, the program plans to add multiple new capabilities to the TR2 avionics hardware, even though this architecture already has memory and processing limitations running the full Block 3F capabilities, resulting in avionics stability issues and capability limitations.
- For Block 4.2, the program plans to simultaneously add multiple significant new software capabilities while migrating to a new avionics hardware configuration, including a new open-architecture TR3 processor and new electronic warfare (EW) hardware. This will be far more challenging than the program’s problematic re-hosting of Block 2B software, designed to run on TR1 processors, on to TR2 processors to create Block 3i. Although no new capabilities were added in Block 3i, significant avionics stability issues were manifested due to technical debt and differences with the new architecture.
- The program claims the new F-35 Block 4.2 software, which will be designed to run on new TR3 processors, will also be backward-compatible to run in the hundreds of early production aircraft with TR2 processors, but has not yet presented a plan to demonstrate this. Based on the current TR2 architecture capacity limitations with Block 3F, this claim is unlikely to be realized.
- Instead of adding lab capacity to support testing of processor loads with the additional mission systems capabilities, the program plans to reduce the lab infrastructure supporting development. The program has already retired the Cooperative Avionics Test Bed aircraft – a decision that has increased the burden on flight testing with F-35 aircraft.
- Current JPO projections for modifying aircraft with TR2 processors to the TR3 processor configuration extend into the 2030s. As a result, up to three configurations of test aircraft and labs may be needed if the program requires more advanced processors than the TR3 planned for Block 4 (i.e., the next Block upgrade requiring even more processing capacity driving the need for new processors).
- The program also does not yet have an executable plan to provide a mission data reprogramming lab in the TR3 configuration in time to support Block 4.2 OT and fielding.
- Attempting to proceed with the current unrealistic plans for FoM would be to completely ignore the costly lessons learned from Block 2B, 3i and 3F development, as well as those from the F-22 program. As learned from the F-22 Blocks 3.1, 3.2A and 3.2B, an overly aggressive plan with inadequate resources ultimately takes longer, costs more and delays needed capabilities for the warfighter.
- This report includes assessments of the progress of testing to date, including developmental and operational testing intended to verify performance prior to the start of IOT&E. Test flights and test points are summarized in two tables on the next page.
- For developmental flight testing, the program creates test plans by identifying specific test points (discrete measurements of performance under specific flight test conditions) for accomplishment, in order to assess the compliance of delivered capabilities with contract specifications.
- Baseline test points refer to points in the test plans that must be accomplished in order to evaluate if performance meets contract specifications.
- Non-baseline test points are accomplished for various reasons. Program plans include a budget for some of these points within the capacity of flight test execution. The following describes non-baseline test points.
 » Development points are test points required to “build up” to, or prepare for, the conditions needed for assessing specification compliance (included in non-baseline budgeted planning in CY16).
 » Regression points are test points flown to ensure that new software does not introduce shortfalls in performance for requirements that had previously been verified using previous software (included in non-baseline budgeted planning in CY16).
 » Discovery points are test points flown to investigate root causes of newly discovered deficiencies or to characterize deficiencies so that the program can design fixes for them (not included in planning in CY16).
- As the program developed plans for allocating test resources against test points in CY16, the program included a larger budget for non-baseline test points (development and regression points) for mission systems testing, as the plans for the year included multiple versions of software, requiring regression and developmental test points be completed. For CY16 mission systems testing, planners budgeted an additional 69 percent of the number of planned baseline test points for non-baseline test purposes (e.g., development and regression points), the largest margin planned for a CY to date. This large margin was planned because the program anticipated the test centers would need points for building up to the baseline points that would be flown for specification compliance as well as for completing regression of multiple versions of Block 3F software. In this report, growth in test points refers to points flown over and above the planned amount of baseline and budgeted non-baseline points (e.g., discovery points and any other added testing not originally included in the formal test plan).
FY16 DOD Programs

- The continued need to budget for non-baseline test points in the CY16 plan is a result of the limited maturity of capabilities in the early versions of mission systems software. Although the program planned to complete developmental flight testing in January 2017, according to their Integrated Master Schedule, developed after the program was restructured in 2010, delays in issuing mature software to flight test made it clear that regression and development test points would still be needed throughout CY16.

- Cumulative SDD test point data in this report refer to the total progress towards completing development at the end of SDD.

- Limited operational testing was also conducted throughout the year to support assessments of weapon capability, deployment demonstrations, shipborne testing, and the Air Force’s IOC declaration; results of these limited tests are used to support assessments throughout this report.

TEST FLIGHTS (AS OF NOVEMBER 30, 2016)

<table>
<thead>
<tr>
<th></th>
<th>All Testing</th>
<th>Flight Sciences</th>
<th>Mission Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Variants</td>
<td>F-35A</td>
<td>F-35B</td>
</tr>
<tr>
<td>2016 Planned</td>
<td>1,221</td>
<td>151</td>
<td>359</td>
</tr>
<tr>
<td>2016 Actual</td>
<td>1,362</td>
<td>226</td>
<td>386</td>
</tr>
<tr>
<td>Difference from Planned</td>
<td>+11.5%</td>
<td>+49.7%</td>
<td>+7.5%</td>
</tr>
<tr>
<td>Cumulative Planned</td>
<td>7,624</td>
<td>1,587</td>
<td>2,242</td>
</tr>
<tr>
<td>Cumulative Actual</td>
<td>7,853</td>
<td>1,697</td>
<td>2,318</td>
</tr>
<tr>
<td>Difference from Planned</td>
<td>+3.0%</td>
<td>+6.9%</td>
<td>+3.4%</td>
</tr>
<tr>
<td>Prior to CY16 Planned</td>
<td>6,403</td>
<td>1,436</td>
<td>1,883</td>
</tr>
<tr>
<td>Prior to CY16 Actual</td>
<td>6,492</td>
<td>1,471</td>
<td>1,932</td>
</tr>
</tbody>
</table>

TEST POINTS (AS OF NOVEMBER 30, 2016)

<table>
<thead>
<tr>
<th></th>
<th>All Testing</th>
<th>Flight Sciences</th>
<th>Mission Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Variants</td>
<td>F-35A</td>
<td>F-35B</td>
</tr>
<tr>
<td>2016 Test Points Planned (by type)</td>
<td>8,774</td>
<td>1,205</td>
<td>159</td>
</tr>
<tr>
<td>2016 Test Points Accomplished (by type)</td>
<td>7,838</td>
<td>1,303</td>
<td>156</td>
</tr>
<tr>
<td>Difference from Planned</td>
<td>-10.7%</td>
<td>+8.1%</td>
<td>-1.9%</td>
</tr>
<tr>
<td>Points Added Beyond Budgeted Non-Baseline (Growth Points)</td>
<td>304</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Test Point Growth Percentage (Growth Points/Test Points Accomplished)</td>
<td>3.9%</td>
<td>0.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Total Points (by type) Accomplished in 2016</td>
<td>8,142</td>
<td>1,459</td>
<td>1,952</td>
</tr>
</tbody>
</table>

Cumulative Data

<table>
<thead>
<tr>
<th></th>
<th>All Testing</th>
<th>Flight Sciences</th>
<th>Mission Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-35A</td>
<td>F-35B</td>
<td>F-35C</td>
</tr>
<tr>
<td>Cumulative System Design and Development (SDD) Planned Baseline</td>
<td>51,060</td>
<td>12,225</td>
<td>15,994</td>
</tr>
<tr>
<td>Cumulative SDD Actual Baseline</td>
<td>50,278</td>
<td>12,327</td>
<td>15,970</td>
</tr>
<tr>
<td>Difference from Planned</td>
<td>-1.5%</td>
<td>+0.8%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Est. Baseline Test Points Remaining</td>
<td>6,649</td>
<td>100</td>
<td>1,726</td>
</tr>
<tr>
<td>Est. Non-Baseline Test Points Remaining</td>
<td>2,502</td>
<td>12</td>
<td>136</td>
</tr>
</tbody>
</table>

1. Mission Systems Test Points for CY16 are shown only for Block 3F. Testing conducted to support Block 2B and Block 3I Mission Systems are discussed separately in the text. Cumulative numbers include all previous Mission Systems activity.

2. These points account for planned development and regression test points built into the 2016 plan; additional points are considered “growth.” The total number of regression, development and discovery points completed is the sum of budgeted non-baseline test points accomplished plus points added beyond budgeted non-baseline.

3. Represents mission systems activity not directly associated with Block capability (e.g., radar cross section characterization testing, test points to validate simulator).

4. Total Points Accomplished = 2016 Baseline Accomplished + Added Points
Developmental Testing: F-35A Flight Sciences

Flight Test Activity with AF-1, AF-2, and AF-4 Test Aircraft

- F-35A flight sciences testing focused on:
 - Clearing the F-35A Block 3F flight envelope (i.e., to Mach 1.6, 700 knots, and 9.0 g) for loads, flutter, and weapons environment
 - Testing of the internal gun
 - Flight envelope clearance for external weapons required for full Block 3F weapons capability
 - Weapons separation testing of the AIM-9X missile (external only), GBU-12 bomb (external carriage added for Block 3F)
 - High energy braking, high sink rate landings, and arresting gear engagements
 - AF-4 completed all flight testing for which it had been slated, in July, and transitioned to chemical and biological testing in August

F-35A Flight Sciences Assessment

- The program planned to complete F-35A flight sciences testing by the end of October 2016; however, additional testing for weapons environment and regression of new software forced testing to continue into at least December 2016. The program was able to complete baseline test points to clear the aircraft structure for Block 3F envelope (up to 9 g, 1.6M and 700 knots), completing flutter testing on AF-2 on September 29 and loads testing on AF-1 on November 4, 2016. Through the end of November, the test team flew 50 percent more flights than planned (226 flown versus 151 planned) and accomplished 8 percent more baseline test points than planned for the year (1,303 test points accomplished versus 1,205 planned). These additional baseline test points were added by the program throughout the year and represent testing not originally budgeted for when the CY16 plans were made. The test team also flew an additional 156 test points for regression of new air vehicle software, all of which were within the budgeted non-baseline test points allocated for the year. As of the end of November the program had approximately 100 baseline test points remaining to complete F-35A flight sciences testing for Block 3F.
- The following discoveries were made during F-35A flight sciences testing:
 - Failure of the attachment joint, as indicated by the migration of the bushing in the joint, between the vertical tail and the airframe structure is occurring much earlier than planned, even with a newly designed joint developed to address shortfalls in the original design. In October 2010, the F-35A full scale durability test article, AJ-1, showed wear in the bushing of this joint after 1,784 test hours, which indicated that the joint will fall short of the 8,000 hours of service life required by the JSF contract specification. The program developed a redesigned joint and began installing them on the production line with Lot 6 aircraft, which began delivery in October 2014. Subsequently, in July 2015, when inspections showed bushing migrations and significant damage to the right and left side attachment joints in BF-3, one of the F-35B flight sciences developmental test aircraft, the joint was repaired and the bushing replaced to replicate the redesigned joint. In August, 2016, inspections of the joints in AF-2, one of the F-35A flight sciences developmental test aircraft, showed similar bushing migration requiring repair and bushing replacement in accordance with the redesign. On September 1, 2016, inspections of the vertical tail on BF-3 showed that the newly designed joint had failed, after only 250 hours of flight testing since the new joint had been installed, requiring another repair and replacement. BF-3 completed repairs and returned to flight on November 10, 2016.
 - Vibrations induced by the gun during firing are excessive and caused the 270 volts DC battery to fail. The program began qualification testing of a redesigned battery in 2015, but cracks in the casing discovered after the first series of testing required additional redesigning of the battery. Requalification of a newly designed battery has not yet occurred as of the writing of this report.
 - Limitations to the carriage and employment envelope of the AIM-120 missile above 550 knots may be required due to excessive vibrations on the missiles and bombs in the weapons bay. Analyses of flight test data and ground vibration test data are ongoing (this applies to all variants).
 - Excessive and premature wear on the hook point of the arresting gear has caused the program to consider a more robust redesign. In fact, the hook point has required replacement after only one engagement in some instances; the longest a hook point has lasted to date is five arrestments. This fails to meet the minimum service life of 15 arrestments. Additionally, failure of the hook point of the arresting gear on AF-4 occurred in July during testing of high speed engagements. However, this appears to be due to a malfunction of the Mobile Aircraft Arresting System (MAAS), which holds the arresting cable in place on both sides of the runway. The MAAS is designed to allow the arresting cable to slide across the hook upon engagement until the right and left sides are in equilibrium before the braking action to slow the aircraft takes place (this helps steer the aircraft toward the center of the runway during the engagement). For unknown reasons, only one side of the MAAS released the cable, resulting in the hook point becoming abraded by the arresting cable and failing 1.5 seconds after engagement.
 - Block 3F envelope testing required an inflight structural temperature assessment, which yielded higher than predicted air flow temperatures in the engine nacelle bay in high-speed portions of the flight envelope under high dynamic pressures. This resulted in higher than expected nacelle structural temperatures on both the F-35A and F-35C aircraft. Thermal stress analyses of the affected parts are necessary before the program can provide the full
Block 3F flight envelope for fleet release. The outcome may result in restricting fielded operational aircraft to 600 knots airspeed below 5,000 feet altitude or a structural change; this will be determined when the Services review the analyses and issue the military flight release, which certifies the operational flight envelope.

- All F-35 variants display objectionable or unacceptable flying qualities at transonic speeds, where aerodynamic forces on the aircraft are rapidly changing. Particularly, under elevated “g” conditions, when wing loading causes the effects to be more pronounced, pilots have reported the flying qualities as “unacceptable.” The program adjusted control laws that govern flight control responses in an updated version of software released to flight test in March 2016. Results from flight testing of the software changes have not yet been released. Although the elevated g “dig-in” apparently affects all three variants, the program does not plan to develop any additional control law changes to mitigate these responses to aerodynamic effects in the transonic region. In operational fleet aircraft, g limit exceedances are announced to the pilot and, in peacetime, result in subsequent restricted maneuvering, mission termination, and a straight-in approach and landing to recover the aircraft. The aircraft is then down for some time for maintenance inspections and potential repairs. Also, the probability and long-term structural effects of the g exceedances should be assessed by the program and mitigated, if necessary.

- Foam insulation around the polyalphaolefin (PAO) coolant tubes that pass through wing and main body fuel tanks in F-35A aircraft was found to be failing after exposure to fuel. The discovery was made on a fielded production F-35A aircraft (AF-101) as it was undergoing depot-level modifications for fuel valves in August 2016. The program determined the cause was a failure of the manufacturing process with the sealant coating on the insulation designed to protect the insulation from being exposed to fuel. Instead, the sealant was permeable to fuel, permitting the insulation to absorb fuel and expand, forcing cracking and failure of the sealant coatings and eventual breakdown and flaking of the insulation. This affected a total of 57 F-35A aircraft; 42 in the production process and 15 fielded aircraft. The Air Force temporarily grounded the 15 fielded aircraft, 10 of which were designated as Initial Operational Capability aircraft. The program quickly developed inspections and implemented procedures to mitigate the insulation problems for fielded aircraft and those too far in the production line to have the fuel lines replaced with proper insulation. The procedures vary depending on whether fuel has entered the tank with the PAO lines. For aircraft in which the fuel tanks have contained fuel, the procedures involve accessing the affected fuel tanks, removing the defective insulation, installing blocking screens to prevent debris from leaving the tank (and possibly contaminating other tanks, clogging valves or affecting fuel pump operation). For the aircraft in the production line that have not yet had fuel in the tanks, the insulation will be removed from the PAO tubes, but screens will not be added to the tank. The program does not plan to re-insulate the PAO tubes, as the Block 3F avionics – which are cooled by the PAO – apparently have adequate thermal margin to tolerate the loss of insulation on the tubes. The program must ensure that deployed operating locations with high ambient temperatures – such as those in Southwest Asia – are able to provide the cooling effect necessary to prevent avionics overheating conditions, especially for heat-soaked aircraft with hot fuel tanks and during extended ground operations. The program will need to conduct another assessment for Block 4 avionics, and any new processors, to ensure the thermal margin with that hardware configuration is still adequate.

- An Air Force F-35A aircraft assigned to Luke AFB, Arizona, experienced a tailpipe fire during engine start while deployed to Mountain Home AFB, Idaho in September 2016, causing significant damage to the aircraft. The incident is under investigation.

- The program designed and fielded an electrical Engine Ice Protection System (EIPS) to protect the engine from ice damage when exposed to icing conditions during ground operations and in flight. Although it was qualified during SDD engine ground tests, no SDD aircraft have the system installed in the engine. The program fielded the system with later-lot production aircraft, but deficiencies in the system caused electrical shorting and damage to the composite blades (referred to as the Fan Inlet Variable Vanes) on the front of several engines. To prevent further damage to engines in the field, the program has disabled EIPS and is changing the technical orders to require pilots to shut down the aircraft if icing conditions are encountered on the ground. DOT&E is not aware of any corrections to the EIPS planned during SDD.

- The program completed the final weight assessment of the F-35A air vehicle for contract specification compliance in April 2015 with the weighing of AF-72, a Lot 7 aircraft. The actual empty aircraft weight was 28,999 pounds, 372 pounds below the planned not-to-exceed weight of 29,371 pounds. The actual weights of production aircraft since then have been stable, with no significant weight growth observed. Weight estimates for production Lots 10 and later indicate an expected weight growth of between 120 and 140 pounds, primarily due to new electronic warfare (EW) avionics. Weight management of the F-35A is important for meeting performance requirements and structural life expectations. The program will need to continue disciplined management of the actual aircraft weight beyond the contract specification as further discoveries during the remainder of SDD may add weight and result in performance degradation that would adversely affect operational capability.
Developmental Testing: F-35B Flight Sciences

Flight Test Activity with BF-1, BF-2, BF-3, BF-4, and BF-5 Test Aircraft

- F-35B flight sciences focused on:
 - Clearing the F-35B Block 3F flight envelope (i.e., to Mach 1.6, 630 knots, and 7.0 g)
 - High angle-of-attack testing with external stores
 - Air refueling with the British KC-30A Voyager and Air Force KC-10 aircraft
 - Mode 4 (i.e., flight with the lift fan engaged to support short takeoff and vertical landing operations) envelope expansion
 - Weapons separation testing of the AIM-9X missile (external only), GBU-12 bomb (external carriage added for Block 3F); Paveway IV bomb (internal and external) for the United Kingdom, AIM-132 missile (external only) for the United Kingdom
 - Ground gun fire testing with the F-35B gun pod; accomplished on BF-1 in July

F-35B Flight Sciences Assessment

- Through the end of November, the test team flew 8 percent more flights than planned (386 flown versus 359 planned), yet accomplished 5 percent less than the planned Block 3F baseline test points (1,783 points accomplished versus 1,876 planned). The team flew an additional 169 test points for regression of new air vehicle software, 115 of which were the budgeted non-baseline points planned for CY16 and 54 points representing growth.
- The following details discoveries in F-35B flight sciences testing:
 - Limitations to the carriage and employment envelope of the AIM-120 missile above 550 knot may be required due to excessive vibrations induced on the missiles and bombs in the weapons bay. Analyses of flight test data and ground vibration test data are ongoing (applies to all variants).
 - All F-35 variants display objectionable or unacceptable flying qualities at transonic speeds, where aerodynamic forces on the aircraft are rapidly changing. Particularly, under elevated “g” conditions, when wing loading causes the effects to be more pronounced, pilots have reported the flying qualities as “unacceptable.” The program adjusted control laws that govern flight control responses in an updated version of software released to flight test in March 2016. In the F-35B, an uncommanded aircraft g “dig-in” that exceeds design limits has been observed while performing elevated-g maneuvers in the transonic region between 0.9M and 1.05M. Significant g exceedances (up to 7.7 g; a 0.7 g exceedance) have occurred when pilots were attempting to sustain 6.5 g or greater in this region. Based on flight test data, the F-35B responses to transonic aerodynamic effects between 0.9M and 1.05M during rolling or elevated-g maneuvering cause uncommanded excursions that exceed the designed g limit as well. Although the elevated g “dig-in” apparently affects all three variants, the program does not plan to develop any additional control law changes to mitigate these responses to aerodynamic effects in the transonic region. In operational fleet aircraft, g limit exceedances are annunciated to the pilot, and in peacetime, result in subsequent restricted maneuvering, mission termination, and a straight-in approach and landing to recover the aircraft. The aircraft is then down for some time for maintenance inspections and potential repairs. Also, the probability and long-term structural effects of the g exceedances should be assessed by the program and mitigated, if necessary.
 - Horizontal tail overheating was experienced on BF-3 during loads testing while accelerating to 1.5M for a loads test point. The left horizontal inboard fairing reached temperatures that exceeded the design limit by a significant amount. Post-flight inspections revealed de-bonding on the trailing edge of the horizontal tail surface and heat damage was noted on the horizontal tail rear spar. Hardness checks on the rear spar were performed and were determined to be within the acceptable range. It is not yet known whether the program or the Services will impose airspeed or afterburner time restrictions in the Block 3F envelope due to horizontal tail overheating.
 - Failure of the attachment joint, as indicated by the migration of the bushing in the joint, between the vertical tail and the airframe structure, is occurring much earlier than planned, even with a newly designed joint developed to address shortfalls in the original design. In October 2010, the F-35A full scale durability test article, AJ-1, showed wear in the bushing of this joint after 1,784 test hours, which indicated that the joint will fall short of the 8,000 hours of service life required by the JSF contract specification. The program developed a redesigned joint and began installing them on the production line with Lot 6 aircraft, which began delivery in October 2014. Subsequently, in July 2015, when inspections showed bushing migrations and significant damage to the right and left side attachment joints in BF-3, one of the F-35B flight sciences developmental test aircraft, the joint was repaired and the bushing replaced, to replicate the redesigned joint. In August 2016, inspections of the joints in AF-2, one of the F-35A flight sciences developmental test aircraft, showed similar bushing migration requiring repair and bushing replacement in accordance with the redesign. On September 1, 2016, inspections of the vertical tail on BF-3 showed that the newly designed joint had failed, after only 250 hours of flight testing since the new joint had been installed, requiring another repair and replacement. BF-3 completed repairs and returned to flight on November 10, 2016.
 - An F-35B assigned to Marine Corps Air Station Beaufort, South Carolina, experienced a fire within the weapons bay during a training mission in late October 2016. The
FY16 DOD Programs

Developmental Testing: F-35C Flight Sciences

Flight Test Activity with CF-1, CF-2, CF-3, and CF-5 Test Aircraft
- F-35C flight sciences focused on:
 - Clearing the F-35C Block 3F flight envelope (i.e., to Mach 1.6, 700 knots, and 7.5 g)
 - Air refueling with F/A-18, KC-10, and KC-135 aircraft
 - Weapons separation testing of the AIM-9X missile (external only), Joint Standoff Weapon (JSOW, internal only), GBU-12 bomb (external carriage added for Block 3F)
 - Shore-based ship suitability testing with external stores, in preparation for shipborne trials that were conducted in August
 - High angle-of-attack testing with external stores
 - Testing of the Joint Precision Approach and Landing System (JPALS)
 - Ground gun fire testing with the F-35C gun pod; accomplished on CF-3 in November

F-35C Flight Sciences Assessment
- Through the end of November, the test team flew 14 percent more than planned flights (271 flown versus 237 planned), but accomplished 23 percent less than the planned Block 3F baseline test points (1,304 points accomplished versus 1,695 planned). The team flew an additional 136 test points for regression of new software, all of which were accounted for in the budgeted non-baseline points planned for the year.
- The following details discoveries in F-35C flight sciences testing:
 - Flight testing of structural loads with the AIM-9X air-to-air missile, which will be carried on external pylons outboard of the wing fold in the F-35C, shows exceedances above the wing structural design limit during flight in regions of aircraft buffet (increased angle-of-attack) and during landings. To address these deficiencies, the program is developing a more robust outer wing design, which is scheduled for flight testing in early CY17. Without the redesigned outer wing structure, the F-35C will have a restricted flight envelope for missile carriage and employment, which will be detrimental to maneuvering, close-in engagements.
 - Limitations to the carriage and employment envelope of the AIM-120 missile above 550 knots may be required due to excessive vibrations induced on the missiles and bombs due to the acoustics in the weapons bay. Analyses of flight test data and ground vibration test data are ongoing (this applies to all variants).
 - All F-35 variants display objectionable or unacceptable flying qualities at transonic speeds, where aerodynamic forces on the aircraft are rapidly changing. Particularly, under elevated “g” conditions, when wing loading causes the effects to be more pronounced, pilots have reported the flying qualities as “unacceptable.” The program adjusted control laws that govern flight control responses in an updated version of software released to flight test in March 2016. In the F-35C, like the other variants, an
uncommanded aircraft g “dig-in” that exceeds design limits has been observed while performing testing of elevated-g maneuvers in the transonic region of the flight envelope. While attempting to sustain a maximum g (7.5g) turn, an F-35C test aircraft experienced 8.2 g – an exceedance of 0.7 g. The program does not plan to develop any additional control law changes to address the flying quality. Similar to the other variants, an over-g condition requires the pilot to terminate the mission (in peacetime) and recover the aircraft with a straight-in approach and landing with minimal maneuvering. The aircraft is then down for some time for maintenance inspections and potential repairs. Also, the probability and long-term structural effects of the g exceedances should be assessed by the program and mitigated, if necessary.

- Weapons environment testing showed that the aircraft experienced transient rolling conditions while asymmetrically opening and closing the weapon bay doors (WBD). The flight control laws were designed to compensate for the doors opening and closing asymmetrically. The program corrected the on-board aerodynamic models in two vehicle systems software updates (versions R31.1 and R35.1) to reduce the roll transients. These corrections resolved the transients for the subsonic and transonic flight regimes, but not for supersonic regimes. The operational impact of these transients will be assessed during IOT&E.

- Block 3F envelope testing required an inflight structural temperature assessment, which yielded higher than predicted air flow temperatures in the engine nacelle bay in high-speed portions of the flight envelope under high dynamic pressures. This resulted in higher nacelle structural temperatures on both the F-35A and F-35C aircraft. Thermal stress analyses of the affected parts are necessary before the program can provide the full Block 3F flight envelope for fleet release. The outcome may result in restricting fielded operational aircraft to 600 knots airspeed below 5,000 feet altitude, or a structural change; this will be determined when the Services review the analyses and issue the military flight releases, which will certify the operational flight envelope.

- As reported in previous DOT&E Annual Reports, the F-35C experiences buffet and transonic roll off (TRO), an uncommanded roll, at transonic Mach numbers and elevated angles of attack. It is caused by the impact of airflow separating from the leading edge of the wing that “buffets” aft areas of the wing and aircraft during basic fighter maneuvering. The TRO and buffet occur in areas of the maneuvering envelope that cannot be sustained for long periods of time, as energy depletes quickly and airspeed transitions out of the flight region where these conditions manifest. However fleeting, these areas of the envelope are used for critical maneuvers. Operational testing of the F-35C during IOT&E will assess the effect of TRO and buffet on overall mission effectiveness.

- Due to the stiffness of the landing gear struts, particularly the nose gear, taxiing in the F-35C results in excessive jarring of the aircraft and often requires pilots to stop taxiing if they need to make changes using the touchscreens on the cockpit displays or to write information on their kneeboard. Currently, the program has no plans to correct the deficiency of excessive jarring during F-35C taxi operations.

- Excessive vertical oscillations during catapult launches make the F-35C operationally unsuitable for carrier operations, according to fleet pilots who conducted training onboard USS George Washington during the latest set of ship trials. Although numerous deficiencies have been written against the F-35C catapult launch – starting with the initial set of F-35C ship trials (DT-I) in November 2014 – the deficiencies were considered acceptable for continuing developmental testing. Fleet pilots reported that the oscillations were so severe that they could not read flight critical data, an unacceptable and unsafe situation during a critical phase of flight. Most of the pilots locked their harness during the catapult shot which made emergency switches hard to reach, again creating, in their opinion, an unacceptable and unsafe situation. The U.S. Navy has informed the Program Office that it considers this deficiency to be a “must fix” deficiency. The program should address the deficiency of excessive vertical oscillations during catapult launches within SDD to ensure catapult operations can be conducted safely during IOT&E and during operational carrier deployments.

- Overheating of the Electro-Hydraulic Actuator System (EHAS) occurs under normal maneuvering in the F-35C. The EHAS actuators move the flight surfaces and are cooled by airflow across the control surfaces. Pilots are alerted in the cockpit of an overheat condition and must then minimize maneuvering and attempt to cool the EHAS by climbing, if practical, to an altitude with lower temperatures to enhance cooling. Recovery and landing must be completed as soon as possible, terminating the mission.

- The program designed and fielded an electrical Engine Ice Protection System (EIPS) to protect the engine from ice damage when exposed to icing conditions during ground operations and in flight. Although it was qualified during SDD engine ground tests, no SDD aircraft have the system installed in the engine. The program fielded the system with later-lot production aircraft, but deficiencies in the system have caused electrical shorting and damage to the composite blades (referred to as the Fan Inlet Variable Vanes) on the front of the engine. To prevent further damage to engines in the field, the program has disabled EIPS and is changing the technical orders to require pilots to shut down the aircraft if icing conditions are encountered on the ground. DOT&E is not aware of any corrections to the EIPS planned during SDD.
- Weight management of the F-35C is important for meeting air vehicle performance requirements, including the KPP for recovery approach speed to the aircraft carrier, and structural life expectations. The program completed the final weight assessment of the F-35C air vehicle for contract specification compliance in May 2016 with the weighing of CF-28, a Lot 8 aircraft. The actual empty aircraft weight was 34,581 pounds, 287 pounds below the planned not-to-exceed weight of 34,868 pounds. The weights of the other three Lot 8 production aircraft have been consistent with that of CF-28. Weight estimates for production Lots 11 and later indicate an expected weight growth of approximately 160 pounds. The program will need to continue rigorous management of the actual aircraft weight throughout the balance of SDD to avoid performance degradation that would affect operational capability.

Developmental Testing: Mission Systems

- Mission systems are developed, tested, and fielded in incremental blocks of capability.

 - **Block 1.** The program designated Block 1 for initial training capability in two increments: Block 1A for Lot 2 (12 aircraft) and Block 1B for Lot 3 aircraft (17 aircraft). No combat capability was available in either Block 1 increment. The Services have upgraded all of these aircraft to the Block 2B configuration through a series of modifications and retrofits. Additional modifications will be required to configure these aircraft in the Block 3F configuration.

 - **Block 2A.** The program designated Block 2A for advanced training capability and delivered aircraft in production Lots 4 and 5 in this configuration. No combat capability was available in Block 2A. The Services accepted 62 aircraft in the Block 2A configuration (32 F-35A aircraft in the Air Force, 19 F-35B aircraft in the Marine Corps, and 11 F-35C aircraft in the Navy). Similar to the Block 1A and Block 1B aircraft, the Services have upgraded all of the Block 2A aircraft to the Block 2B configuration with modifications and retrofits, although fewer modifications were required. Additional modifications will be required to fully configure these aircraft in the Block 3F configuration.

 - **Block 2B.** The program designated Block 2B for initial, limited combat capability with selected internal weapons (AIM-120C, GBU-31/32 JDAM, and GBU-12). This block is not associated with the delivery of any lot of production aircraft, but with an upgrade of mission systems software capability for aircraft delivered through Lot 5 in earlier Block configurations. Block 2B is the software that the Marine Corps accepted for the F-35B IOC configuration. Corrections to some deficiencies identified during Block 2B and Block 3i mission systems testing have been included in the latest production release of Block 2B software – version 2BR5.3 – fielded in May 2016 after airworthiness testing in April. The Services began converting aircraft from these earlier production lots to the Block 3i configuration by replacing the older Technical Refresh 1 (TR1) integrated core processor with newer Technical Refresh 2 (TR2) processors this year. As of the end of November, 1 F-35A (AF-31) and 1 F-35B (BF-19) had completed the TR2 modifications, both of which are instrumental operational test aircraft. The Marine Corps declared IOC with Block 2B-capable aircraft in July 2015.

 - **Block 3i.** The program designated Block 3i for delivery of aircraft in production Lots 6 through 8, as these aircraft include a set of upgraded TR2 integrated core processors. The program delivered Lot 6 aircraft with a Block 3i version that included capabilities equivalent to Block 2A in Lot 5. Lot 7 aircraft were delivered with capabilities equivalent to Block 2B, as are Lot 8 aircraft currently. Block 3i software began flight testing in May 2016 (software version 3iR5) and returned to Block 3i development and flight testing to address poor mission systems stability. After completing flight testing in April of another build of Block 3i software, version 3iR6.21, that version was fielded to the operational units with improved stability performance, which was similar to that seen in the latest build of Block 2B software. By the end of November, the program had delivered 51 F-35A aircraft to the Air Force, 17 F-35B aircraft to the Marine Corps, and 13 F-35C to the Navy in the Block 3i configuration in Lots 6, 7 and 8. The Air Force declared IOC with Block 3i-capable aircraft in August 2016.

 - **Block 3F.** The program designated Block 3F as the full SDD warfighting capability for production Lot 9 and later. Block 3F expands the flight envelope for all variants and includes additional weapons, external carriage of weapons, and the gun. Flight testing with Block 3F software on the F-35 test aircraft first began in March 2015. Flight testing of Block 3F mission systems software, version 3FR5, was paused in February 2016 when the program discovered that it was too unstable for productive flight testing. The program elected to reload a previous version of Block 3F software – version 3FR4 – on the mission systems flight test aircraft, to allow limited testing to proceed. After improving the flight stability of the Block 3i software, the program applied the corrections to deficiencies causing instabilities to the Block 3FR5 software and delivered another version to flight test – version 3FR5.02 – in March, to continue Block 3F testing. The program restarted Block 3F testing in earnest in May with Block 3FR5.03 and released several more Quick Reaction Cycle (QRC) versions, Blocks 3FR5.04 through 3FR5.07, through November 2016 in attempts to quickly address key deficiencies that were blocking test points. The program delivered the final planned version of Block 3F software –
3FR6 – to flight testing in December 2016. The program will then determine, with testing in early 2017, if additional QRC patches will be adequate to meet specifications, or if another full release of Block 3F software (e.g., 3FR7) will be required. Of note, all of the aircraft from earlier production lots, i.e., Lots 2 through 5 will need to be modified, including structural modifications and the installation of TR2 processors, to have full Block 3F capabilities. The program plans to begin delivering Lot 9 aircraft in early CY17. The Program Office has agreed to allow the initial Lot 9 aircraft to be delivered with Block 3i software. These provisional acceptances may continue until August 2017, when the program plans to have Block 3FP8 – the first version of Block 3F production software – for delivery of the remainder of Lot 9 and later aircraft.

- Block 4. The program has designated the first release of added capabilities following completion of SDD as Block 4, with four distinct increments (Blocks 4.1, 4.2, 4.3, and 4.4). Current program schedules plan for testing of Block 4.1 to begin at the end of CY19 with subsequent increments following at 2-year intervals. Hardware upgrades are planned in Blocks 4.2 and 4.4, and will include the next upgrade in processors with open-architecture Technical Refresh 3 (TR3) processors. Production cut-in for initial Block 4.1 capabilities is planned with Lot 13, beginning delivery in 2021, and Lot 15 for Block 4.2. The post-SDD development program is referred to as Follow-on Modernization (FoM). However, for reasons discussed elsewhere in this report, the program’s initial FoM plan is not executable and is being re-planned by the program and stakeholders.

Flight Test Activity with AF-3, AF-6, AF-7, BF-4, BF-5, BF-17, BF-18, CF-3, CF-5, and CF-8 Flight Test Aircraft and Software Development Progress

- Mission systems testing focused on:
 - Attempting to resolve software stability problems with Block 2B and Block 3i mission systems
 - Block 3F mission systems development and testing
 - Initial integration testing of the U.S. Navy Joint Standoff Weapon, version C1 (JSOW-C1)
 - Completing weapons separation testing for the Small Diameter Bomb (SDB) version I (SDB-I), which requires mission systems-capable aircraft for interfacing with the SDB
 - Weapons integration and testing of the United Kingdom Paveway IV bomb and Advanced Short-Range Air-to-Air Missile (ASRAAM); determining root cause and options to fix ASRAAM integration deficiencies
 - On-Board Inert Gas Generation System (OBIGGS) testing on CF-8, the only F-35C test aircraft modified with the necessary hardware to complete testing
 - Regression testing of Block 2B software on operational test aircraft (AF-21, AF-23, BF-16 and BF-20), since the developmental test aircraft had all already been converted to the Block 3i or Block 3F configuration
 - Joint Precision Approach and Landing System (JPALS) testing with CF-5
 - Testing of the Gen III Helmet Mounted Display System (HMDS) illumination settings during the third F-35C developmental test period at sea, designed to correct excessive “green glow” during night operations onboard the carrier
 - The six mission systems developmental flight test aircraft assigned to the Edwards AFB test center flew an average rate of 6.9 flights per aircraft, per month in CY16 through November, slightly above the planned rate of 6.7 for the year, and flew slightly more than the planned number of flights (479 flights accomplished versus 474 planned).

Mission Systems Assessment

- **Block 2B**
 - Although the program completed Block 2B mission systems testing in 2015 and provided a fleet release version of the software to the fielded units, deficiencies remained and were carried forward into Block 3i. This schedule-driven decision to pass deficiencies forward had consequences. The many deficiencies, including instabilities in both Block 3i and Block 3F mission systems software, led the program to return to Block 3i development to make corrections. When the revised Block 3i software, Block 3iR6.21, demonstrated improved inflight stability, the program developed and tested another version of Block 2B software – version 2BS5.3 – with the corrections to the stability deficiencies included. This version was released to fielded units in May 2016 for the F-35A and F-35B, and in August 2016 for the F-35C; the program expects to complete retrofit of all fielded aircraft in the Block 2B configuration with the Block 2BS5.3 software by the end of January 2017.
 - Because the test center aircraft had all been upgraded to the Block 3i/3F configuration (i.e., with the newer TR2 processors), flight testing of the Block 2BS5.3 software occurred on OT aircraft assigned to the OT squadron at Edwards AFB, California.

- **Block 3i**
 - Block 3i began with the schedule-driven decision to rehost the immature Block 2B software and capabilities into new TR2 avionics processors. Because of the extreme overlap of development and production, combined with delays in software development, the program was forced to create a Block 3i capability to support delivery of Lot 6 and later aircraft, as they were being delivered with the new processors. Although the program originally intended that Block 3i would not inherit technical problems from earlier blocks, this is what occurred, resulting in severe problems with Blocks 3i and 3F software that needed to be addressed, affecting both Block 2B and Block 3i fielded aircraft, and stalling the progress of mission systems testing early in CY16.
 - When Block 3i developmental flight testing began in May 2014, six months later than planned in the program’s
Integrated Master Schedule (IMS), the combination of rehosted, immature software and new processors resulted in severe avionics stability problems that were significantly worse than those in Block 2B. Continued delays in completing Block 2B software development and testing in support of the Marine Corps IOC, which was a priority over Block 3i development for the program and the test centers, combined with the severe stability problems with the early versions of Block 3i software, caused several pauses in early Block 3i flight testing. Block 3i flight testing resumed again in March 2015 and was considered to be complete in October 2015, eight months later than planned in the IMS. Despite the continued problems with avionics stability, sensor fusion, and other inherited issues from Block 2B, the program terminated Block 3i developmental flight testing in October 2015, and released Block 3i software to the fielded units. This decision was made in an attempt to meet the program’s unrealistic schedule for completing development and flight testing of Block 3F mission systems.

- The program created an initial version of Block 3F software by adding the final required capabilities and weapons to the problematic Block 3i software. However, productive and efficient flight testing was not possible due to inherited instabilities and other deficiencies. The Air Force insisted on fixes for seven (five identified in 2014 and two more in 2015) of the most severe deficiencies inherited from Block 2B as a prerequisite to use the final Block 3i capability in the Air Force IOC aircraft. Consequently, in February 2016, the program decided to return to Block 3i development and testing in another attempt to fix key unresolved software deficiencies, including the avionics instabilities troubling both Block 3i and Block 3F. A new version of mission systems software, Block 3iR6.21, was quickly developed and tested, and showed improvement to several of the “must fix” deficiencies identified by the Air Force and the inflight stability problems, so it was released to the fielded aircraft in late May 2016. Data collected on start-up and inflight stability of the Block 3iR6.21 mission systems software showed that both have improved over earlier versions of Block 3i, and are approximately equivalent to the final version of Block 2B software. Based on flights conducted with the production software through the end of October 2016, the Air Force reported that, of the seven “must fix” deficiencies, five had been corrected, one was partially corrected, but needed full Block 3F set of capabilities to ensure full implementation, and one — associated with extended post-mission download times from the aircraft’s portable memory device (PMD) — was awaiting fielding of an upgraded ground data receptacle (see more detail in the ALIS section below).

- Block 3F
 - Block 3F flight testing began in March 2015, six months later than the date planned in the IMS.

- The emphasis on, and return to, Block 3i testing in March and April 2016 contributed in part to the program’s inability to progress with Block 3F flight testing at the planned rate. As of the end of November, a total of 975 Block 3F baseline test points had been completed in CY16, compared to 1,189 planned (82 percent of planned). An additional 1,784 development and regression points were flown, 1,534 of which were accounted for in the budgeted non-baseline points for the year and 250 representing growth.

- The lag in completing baseline test points – which are used to verify capability – is also due to the program delivering Block 3F software to flight test that was not mature enough to meet specification compliance, or because deficiencies prevent the specification from being met. In an attempt to address the deficiencies and the lack of maturity in the software, the program began developing and delivering QRC versions of software to flight test. These software versions are built, lab tested, and delivered to flight test on a shorter timeline than the originally planned series of software versions for Block 3F.

- Delays in starting Block 3F testing, pausing to redo Block 3i work, and the immaturity of the Block 3F software delivered to flight test have all contributed to the program being well behind the plan to complete Block 3F flight testing by the end of July 2017, the forecasted completion date according to the program’s most recent Mission Systems Software and Capability Release Schedule. Instead, DOT&E estimates the program will likely not finish Block 3F development and flight testing prior to July 2018, based on the following:
 - Continuing a 6.5 test point per flight accomplishment rate, which is the CY16 rate observed through the end of November.
 - Continuing a flight rate of 6.9 flights per aircraft per month, as was achieved through the end of November.
 - Completing all of the baseline test points (3,645 remaining as of the end of November) and experiencing a regression, development and discovery test point work load of 63 percent (historical average, but well below the rate of 83 percent experienced in CY16 through November).

- The program plans to truncate the planned testing by eliminating test points, instead using alternative test points or old data, in order to meet schedule deadlines with the expectation of finishing SDD, getting to IOT&E, and starting full-rate production. While this approach may provide a quick sampling assessment of Block 3F capabilities, there are substantial risks. The multiple recent software versions for flight test may prevent the program from using data from older versions of software to count for baseline test point deletions because it may no longer be representative of Block 3F. Limited availability and high cost of range periods, combined with high re-fly rates for test missions completed on the Western Test
FY16 DOD PROGRAMS

- The program plans to provide full Block 3F capability, as defined in the TEMP, with the first Lot 10 aircraft delivery in January 2018. In fact, as required by the National Defense Authorization Act (NDAA) for FY16, the Secretary of the Air Force certified to Congress in September 2016 that these aircraft will have full combat capability, as determined as of the date of the enactment of the NDAA, with Block 3F hardware, software, and weapons carriage. However, for many reasons, it is clear that the Lot 10 aircraft will not initially have full Block 3F capability. These reasons include, but are not limited to, the following:
 - Envelope limitations will likely restrict carriage and employment of the AIM-120 missile and bombs well into 2018, if not later.
 - The full set of geographically specific area of responsibility MDLs will not be complete, i.e., developed, tested and verified, until 2019, at the soonest, due to the program’s failure to provide the necessary equipment and software tools for the USRL.
 - Even after they are delivered, the initial set of MDLs will not be tested and optimized to deal with the full set of threats present in operational test, let alone in actual combat, which is part of full combat capability.
 - The program currently has more than 270 Block 3F unresolved high-priority (Priority 1 and Priority 2, out of a 4-priority categorization) performance deficiencies, the majority of which cannot be addressed and verified prior to the Lot 10 aircraft deliveries; less than half of these deficiencies were being actively worked in Block 3F.
 - The program currently has 17 known and acknowledged failures to meet the contract specification requirements, all of which the program is reportedly planning to get relief from the SDD contract due to lack of time and funding.
 - Dozens of contract specification requirements are projected to be open into FY18; these shortfalls in meeting the contract specifications will translate into limitations or reductions to full Block 3F capability.
 - Estimates to complete Block 3F mission systems that extend into the summer of 2018 have been put forth not just from DOT&E, but also from other independent Department agencies (e.g., CAPE), affirming that delivery of full capability in January 2018 will be nearly impossible to achieve, unless testing is prematurely terminated, which would increase the likelihood that the full Block 3F capabilities will not be adequately tested and priority deficiencies fixed.
 - Deficiencies continue to be discovered at a rate of about 20 per month, and many more will undoubtedly be discovered before and during IOT&E.
 - ALIS version 3.0, which is necessary to provide full combat capability, will not be fielded until mid-2018, and a number of capabilities that had previously been designated as required for ALIS 3.0 are now being
deferred to later versions of ALIS (i.e., after summer of 2018).

- The Department has chosen to not fund the program to the CAPE estimate that the completion of Block 3F mission systems testing will last until mid-2018, a time span which is much later than, and at a cost that is at least double, the Program Office’s latest unrealistic estimate to complete SDD. This guarantees the program will attempt a premature resource- and schedule-driven shutdown of mission systems testing which will increase the risk of mission failures during IOT&E and, more importantly, if the F-35 is used in combat.

- Finally, rigorous operational testing in IOT&E, which provides the most credible means to predict combat performance in advance of actual combat, will not be completed until at best the end of 2019 – and more likely later.

Assessment of Block 2B and 3i “Initial Warfighting” Fielded Capability

- Using aircraft in the Block 2B configuration, both the Air Force, with the F-35A, and the Marine Corps, with the F-35B, have flown simulated combat missions during training or in support of training exercises. These training missions have highlighted numerous shortfalls in Block 2B capability.

 - Unlike legacy aircraft, Block 2B aircraft will need to make substantial use of voice communications to receive targeting information and clearance to conduct an attack during Close Air Support (CAS) missions due to the combined effects of digital data communications deficiencies, lack of infrared pointer capability, limited ability to detect infrared pointer indications from a controller (which may be improved in the Generation III Helmet Mounted Display System (Gen III HDMS)), and inability to confirm coordinates loaded to GPS-aided weapons. Each of these shortfalls limit effectiveness and increase the risk of fratricide in combat.

 - Many pilots assess and report that the Electro-Optical Targeting System (EOTS) on the F-35 is inferior to those currently on legacy systems, in terms of providing the pilot with an ability to discern target features and identify targets at tactically useful ranges, along with maintaining target identification and laser designation throughout the attack. Environmental effects, such as high humidity, often forced pilots to fly closer to the target than desired in order to discern target features and then engage for weapon employment, much closer than needed with legacy systems, potentially alerting the enemy, exposing the F-35 to threats around the target area or requiring delays to regain adequate spacing to set up an attack. However, due to design limitations, there are no significant improvements to EOTS planned for Block 3F.

 - When F-35 aircraft are employed at night in combat, pilots are restricted from using the current limited night vision camera in the Generation II helmet with Block 2B aircraft. This restriction does not apply to pilots equipped with the Generation III helmet, which is fielded with the Block 3i aircraft. In general, if used in combat, pilots flying Block 2B aircraft would operate much like early fourth generation aircraft using cockpit panel displays, with the Distributed Aperture System providing limited situational awareness of the horizon, and heads-up display symbology projected on the helmet.

- Because Block 3i is an interim capability based on Block 2B, it inherited numerous limitations that will reduce operational effectiveness and require workarounds if F-35 in the Block 3i configuration are used in combat. The Air Force conducted an IOC Readiness Assessment (IRA), using F-35A aircraft with four different versions of Block 3i mission systems software. Based on observations from fielded units and from the Air Force’s IRA, the following mission areas will be affected by limitations, which may affect overall effectiveness:

 - Close Air Support (CAS). In many ways, the F-35 in the Block 3i configuration does not yet demonstrate CAS capabilities equivalent to those of fourth generation aircraft. The F-35A in the Block 3i configuration has numerous limitations that make it less effective overall in the CAS mission role than most currently fielded fighter aircraft like the F-15E, F-16, F-18 and A-10 in a permissive or low-threat environment, which is where CAS is normally conducted. These limitations, consistent with observations made by the Air Force in its IRA report, include:

 - The limited weapons load of two bombs (along with two missiles for self-defense) constrains the effectiveness of the Block 3i F-35 for many CAS missions. Compared to a legacy fighter with multiple weapons on racks, and multiple weapons types per aircraft, the limited Block 3i load means that only a limited number and type of targets can be effectively attacked.

 - No gun capability. An aircraft-mounted gun is a key weapon for some CAS scenarios when a bomb cannot be used due to collateral damage concerns or when the enemy is “dangerously close” to friendly troops. The gun can also be an effective weapon for attacking moving targets. However, even though an internal gun is installed in the Block 3i F-35A, it cannot be used until significant modifications to both the gun system and aircraft are completed, and a version of Block 3F software is tested and delivered to fielded aircraft. Gun weapons delivery accuracy (WDA) testing, aimed by the HMDS, with the required modifications and software, has slipped from September 2016 to early 2017. Initial build-up testing for the gun WDA was being planned for December 2016 at the time of writing this report.

 - Limited capability to engage moving targets. Even though the Block 3i F-35A does not have a functioning gun, it can carry the GBU-12 laser guided bomb which has limited moving target capability. However, Block 3i (and Block 3F because it is currently not planned to be addressed) does not have an automated targeting
function with lead-laser guidance (i.e., automatically computing and positioning the laser spot proportionately in front of the moving target to increase the likelihood of hitting the target) to engage moving targets with the GBU-12, like most legacy aircraft have that currently fly CAS missions. Instead, F-35 pilots can only use basic rules-of-thumb when attempting to engage moving targets with the GBU-12, resulting in very limited effectiveness. Also, limitations with cockpit controls and displays have caused the pilots to primarily use two-ship “buddy lasing” for GBU-12 employment, which is not always possible during extended CAS engagements when one of the aircraft has to leave to refuel on a tanker. To meet the ORD requirement for engaging moving targets, the Air Force is considering integrating the GBU-49, a fielded weapon that has similar size, weight and interfaces as the GBU-12, or a similar weapon that does not require lead-laser guidance, in Block 3F. Otherwise, the program plans to develop and field lead-laser guidance in Block 4.2, which would be delivered in CY22, at the earliest. However, because of the similarities, the GBU-49 could be quickly integrated with Block 3F to provide a robust moving target capability for the F-35 much earlier.

- Voice communications are sometimes required to validate digital communications. Problems with Variable Message Format (VMF) and Link-16 datalink messaging – including dropped or hidden information or incorrect formats – sometimes require pilots to use workarounds by validating or “reading back” information over the radio that prevent them from conducting digital (only) CAS, a capability that is common in most legacy CAS aircraft. Recent use of VMF digital communications during weapons demonstration events by the operational test teams has been more successful; however, data analyses are ongoing.

- Limited night vision capability. Although Lot 7 and later aircraft are fielded with the Gen III HMDS, which has shown improvement to the deficiencies with the earlier Gen II HMDS, limitations with night vision capability remain. Pilots using the Gen III helmet for night operations report that visual acuity is still less than that of the night vision goggles used in legacy aircraft, which makes identification of targets and detecting markers more difficult, if not impossible. Also, “green glow” – a condition where light leakage around the edge of the display during low-light conditions makes reading the projected information difficult – is improved over the Gen II HMDS, but is still a concern during low ambient illumination conditions. The program currently has two open “Category 1 High” deficiency reports for “green glow,” with the most significant safety concerns pertaining to nighttime carrier operations.

- Lack of target marking capability – a key capability for both Forward Air Controller-Airborne (FAC-A) and CAS missions. Legacy CAS platforms can mark targets with rockets, flares, and/or infrared (IR) pointers, none of which are currently available on the F-35. The F-35 has a laser designator as part of its Electro-Optical Targeting System (EOTS), but the laser is used for targeting from ownship when using the GBU-12 laser guided bomb or to “buddy-guide” a weapon from another aircraft. This limitation is not planned to be fixed during SDD.

- Other mission areas. In addition to the Block 3i limitations listed above that affect the CAS mission area, the following inherent Block 3i limitations will also affect the capability of the F-35 in other mission areas:
 - Poor ability to accurately locate (i.e., determine geographic location with precision needed for weapons employment) and identify threat emitters.
 - No standoff weapon. With only direct attack bombs, the F-35 in the Block 3i configuration will be forced to fly much closer to engage ground targets and, depending on the threat level of enemy air defenses and acceptable mission risk, it may be limited to engaging ground targets that are defended by only short-range air defenses, or by none at all.
 - The limited weapons loadout of the Block 3i F-35 makes effective attack of many expected types of targets in a typical theater a challenge. For example, unlike legacy aircraft, the Block 3i F-35 has no mixed weapons load capability, which limits flexibility to attack targets with appropriately matched weapons. Block 3i F-35 aircraft can only employ two internally carried bombs, and although internal carriage reduces the susceptibility of the F-35 relative to legacy aircraft, by virtue of the low observability it provides, it does not provide the ability to attack more than one target.
 - Pilots report that inadequacies in Pilot Vehicle Interfaces (PVI) in general, and deficiencies in the Tactical Situation Display (TSD) in particular, which displays the results of sensor fusion and is designed to provide increased situation awareness, continue to degrade battlespace awareness and increase pilot workload. Workarounds to these deficiencies are time-consuming for the pilot and detract from efficient and effective mission execution.

- Block 3i has significant deficiencies that must still be addressed, despite the additional software release to the field, Block 3iP6.21, in May 2016. In addition to the limitations listed above, Block 3i also has hundreds of other deficiencies, the most significant of which must be fixed in Block 3F to realize the full warfighting capability required of the F-35. These deficiencies include, but are not limited to, the following:
 - Avionics sensor fusion performance is still unacceptable.» Air tracks often split erroneously or multiple false tracks on a single target are created when all sensors contribute to the fusion solution. The workaround during early developmental testing was to turn off
FY16 DOD PROGRAMS

some of the sensors to ensure multiple tracks did not form, which is unacceptable for combat and violates the basic principle of fusing contributions from multiple sensors into an accurate track and clear display to gain situational awareness and to identify and engage enemy targets.

- Similarly, multiple false ground tracks often are displayed when only one threat emitter is operating. In addition, tracks that “time out” and drop from the display cannot be recalled, which can cause pilots to lose tactical battlefield awareness on enemy air defense radars that turn on only intermittently, as is typical of missile engagement radars.

- Sharing erroneous tracks over the Multifunction Advanced Data Link (MADL) between aircraft in the F-35 formation multiplies the problems described above.

- The Air Force IOC Readiness Assessment (IRA) report also identified deficiencies with fusion in Block 3i.

 - Electronic warfare (EW) capabilities, including electronic attack (EA), are inconsistent and, in some cases, not effective against required threats.

 - Although the details of the deficiencies are classified, effective EW capabilities are vital to enable the F-35 to conduct Suppression/Destruction of Enemy Air Defenses (SEAD/DEAD) and other missions against fielded threats.

 - The Air Force IRA report also identified significant EW deficiencies in Block 3i.

- Datalinks do not work properly. Messages sent across the MADL are often dropped or pass inaccurate onboard inter-flight fusion tracks based on false or split air tracks and inaccurate ground target identification and positions.

- Reduced on-station time and greater reliance on tanker aircraft. Although this limitation is not unique to the Block 2B or Block 3i configuration, the F-35 has high fuel burn rates and slow air refueling rates that extend air refueling times and decrease overall on-station time, which may reduce overall mission effectiveness.

- The program was able to improve stability of the mission systems software to support the Air Force’s plan to declare IOC. The Program Office reported improvements in Mean Flight Hours Between Instability Events (MFHBIE) for both start-up and in-flight of Block 2B and Block 3i. The latest inflight stability metrics from the Program Office are provided in the table to the right. Note that “2BS” versions of software refer to Block 2B versions delivered to flight test. For Block 3i, the program adopted a naming convention where a “P” version refers to software released for production aircraft and an “R” version is for flight testing. An “R” version of software has additional coding that permits data to be collected from data buses on the aircraft and stored on the DART pod or transmitted to ground stations for recording or playback. For IOT&E, since data will be collected with the instrumentation packages on the OT aircraft, IOT&E will be flown with an “R” version of software where selected data and messages can be directed for recording for post-flight analyses.

- The operational effect of mission systems software instabilities on the F-35 will not be well understood before the completion of formal operational testing. One of the objectives of the Air Force IRA was to examine the frequency and effect of these instability events. The Air Force defined and scored instability events during the IRA in the same way as the Program Office and the contractor for comparison purposes and observed similar trends. An instability event is generally the initial failure, or the primary system failure, and does not account for subsequent failures of the same system or failures of subsystems. In addition, the Air Force collected data on instability occurrences, which includes a broader set of instabilities. An instability occurrence accounts for all failures of systems and associated subsystem failures, when each of the failures could have affected the mission capability of the aircraft. The Air Force collected data on instability occurrences with F-35A aircraft flying the most current Block 3i software and counted 25 occurrences in 34.1 flight hours, resulting in a Mean Flight Hours Between Instability Occurrences of 1.4 hours. During IOT&E, all relevant stability events and occurrences, on the ground or in the air, which impact mission effectiveness or suitability, including repeat events (unless attributed to a hardware failure) will be counted to assess overall mission effect. Similar to the table below, stability data from IOT&E will be compared with data from fielded aircraft with the “P” version of Block 3F software to assess any differences.

- The Air Force IRA test team at Nellis AFB flew a total of 18 mission scenarios (72 aircraft sorties) covering the mission sets of CAS, Air Interdiction (AI), and SEAD/DEAD. The missions were flown over the Western Test Ranges from March 1 through April 29, 2016. Additionally, the assessment included observations from an Air Force-led deployment to Mountain Home AFB, Idaho, with six F-35A

<table>
<thead>
<tr>
<th>MISSION SYSTEMS SOFTWARE INFLIGHT STABILITY METRICS</th>
<th>DATA AS OF NOVEMBER 27, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Release</td>
<td>Number of Inflight Stability Events</td>
</tr>
<tr>
<td>2BS5.2</td>
<td>31</td>
</tr>
<tr>
<td>2BS5.3</td>
<td>1</td>
</tr>
<tr>
<td>3IP6.21</td>
<td>13</td>
</tr>
<tr>
<td>3IR6.21 (Edwards OT Aircraft)</td>
<td>6</td>
</tr>
<tr>
<td>3FRS*</td>
<td>222</td>
</tr>
</tbody>
</table>

* 3FRS metrics are a summation of 8 versions of software used in flight testing: 3FRS, 3FRS.02, 3FRS.03, 3FRS.03QRC, 3FRS.04QRC, 3FRS.05, 3FRS.06, and 3FRS.07.

F-35 JSF 71
The program plans to start delivering production aircraft. Concerning the CAS mission area, the team concluded that the current reprogramming hardware and software tools are so cumbersome that it takes months for the USRL to create, test, optimize, and verify a new MDL. This time-consuming process was still not complete for the complete set of Block 3i AOR-specific MDLs.

- The program has mismanaged sustainment and upgrades of the USRL to the point that it currently does not have the ability to start creating MDFs for Block 3F and will not have that capability until February 2017, at the earliest. Once the USRL can start creating Block 3F MDFs, it will take approximately 15 months to deliver a verified MDL for IOT&E and for fielded Block 3F aircraft.

- The program plans to start delivering production aircraft in the Block 3F configuration in May 2017. Because the USRL will not be able to develop, test, and validate a Block 3F MDL until mid-2018, the Services will have to field Block 3F-capable aircraft with either Block 3i, or with a Block 3F test MDL provided by the contractor; however, either course of action will likely restrict these fielded Block 3F aircraft from use in combat.

- Additionally, the Program Office and Lockheed Martin have failed to complete necessary contracting actions to address current shortfalls in signal generation capability within the USRL, including the key hardware upgrades needed to create, test, and verify Block 3F MDFs to detect and identify emissions from currently fielded threat systems in scenarios with realistic threat densities. This failure occurred in spite of the requirement being clearly identified in 2012 and the Department programming $45 Million in the FY13-16 budgets to address it. The JPO sponsored a gap analysis study of USRL capabilities to determine the lab upgrade requirements at the engineering level before beginning contracting actions. When completed in 2014, the study concluded that between 16 and 20 upgraded radio frequency (RF) signal generator channels would be needed for the USRL to adequately create and test MDFs in the USRL for the fielded threats examined in the study, using realistic scenarios and threat densities. After receiving a proposal for the upgrades from the contractor priced at over $200 Million in May 2016, the JPO requested a new proposal, reportedly with options only for up to 12 upgraded signal generator channels, which the contractor indicated would not be answered until July 2017. Furthermore, once on contract, it would then take approximately 3 years after ordering the equipment for it to be delivered and installed, which will be late to need for
both IOT&E and fielding of Block 3F aircraft. As a result, even though the USRL will eventually have the capability to create MDLs for Block 3F in 2017, it still will not have the required signal generators to test and optimize the MDLs to ensure adequate performance against currently fielded threats.

- To provide the necessary and adequate Block 3F mission data development capabilities for the USRL, the Program Office must immediately fund and expedite the contracting actions for the necessary hardware and software modifications, including an adequate number of additional RF signal generator channels and the other required hardware and software tools. Unless these actions are taken immediately, the USRL will not be configured to create, test, and verify Block 3F MDLs for aircraft for current threat systems and threat scenarios until sometime in 2020, placing the operational aircraft at risk in combat against fielded threats and the program at risk of failing IOT&E. The program is working to find alternative facilities with the required signal generators to mitigate this lab capability shortfall for Block 3F.

- Significant additional investments are also required within 2-3 years to further upgrade the USRL to support F-35 Block 4 Follow-on Modernization (FoM) MDL development. Block 4.2 is currently planned to include new Technical Refresh 3 (TR3) processors and other new hardware which, due to the overlapping Block 4 increments, will require the USRL, or an additional reprogramming lab, to have two different avionics configurations simultaneously – a TR2 line for Blocks 3F and 4.1, plus a TR3 line for Block 4.2 and later. Although the Block 4 hardware upgrades in the USRL will need to begin soon to be ready in time, the reprogramming requirements for Block 4 have yet to be fully defined. The Program Office must expeditiously undertake the development of those requirements and plan for adequate time and resources within the DOD budget cycle, in order to ensure the USRL is able to meet Block 4 MDL requirements.

- The USRL, with JOTT observers, held an “Urgent Reprogramming Exercise (URE)” from April 20 to July 25, 2016. This type of exercise is intended to test the USRL’s ability to respond to an urgent request from a Service to modify the mission data in response to a new threat or new mode of an existing threat. Due to USRL’s ongoing production efforts, the URE was conducted concurrently with the lab’s effort to produce an operational MDL, which is why the exercise period was several months, instead of a few days. The JOTT and USRL carefully tracked hours that were specific to the URE as they occurred and surveyed USRL personnel to identify process issues. The total hours recorded were double the Air Force standard for rapidly reprogramming a mature system. The JOTT identified several key process problems, many of which are described above, including the lack of necessary hardware, analysis tools that were not built for operational use, and missing capabilities, like the ability to quickly determine ambiguities in the mission data. These problems must be corrected in order to bring the USRL’s ability to react to new threats up to the identified standards routinely achieved on legacy aircraft.

- In addition to the above deficiencies that involve overall laboratory capability and tools to develop MDLs, there are also deficiencies in the program’s sustainment efforts to ensure a high state of readiness, particularly if the Services have an urgent reprogramming requirement at any time. To meet these tasks, the USRL must have all necessary equipment in a functioning status, similar to aircraft availability. Inadequacies in the current level of sustainment include, but are not limited to:
 - Insufficient number of Field Service Engineers (FSE) to assist in maintenance and operation of the lab equipment, which include both specialized equipment and aircraft mission equipment
 - Inadequate or insufficient training for most laboratory personnel, which is hindered by the insufficient number of FSEs
 - No engineering drawings or JTD for many critical components, making troubleshooting of failures of those components difficult and lengthening the time required to return the laboratory to full operational status
 - Insufficient spare parts for many critical components
 - Low supply priority, equivalent to that of a unit in training, resulting in long delays to receive required parts
 - Missing part numbers for many components, forcing USRL personnel to submit an Action Request (AR) first to determine the part number before a replacement part can be ordered through supply.

Weapons Integration and Demonstration Events

Block 3F Developmental Testing

- After the release of Block 3iP6.21 software in May 2016, the program focused on completing development of Block 3F capabilities, including weapons envelope and integration testing. To provide an operational employment flight envelope, the program accomplished flight sciences testing of external weapons carriage and employment, as well as integrating bombs (SDB-I, JSOW C-1, and PW-IV) and missiles (AIM-9X and AIM-132 ASRAAM) not previously integrated on the F-35 in Block 2B or 3i.

- The TEMP requires 26 Block 3F weapons delivery accuracy (WDAs) events be completed as part of the Block 3F developmental testing effort. These WDAs are key developmental test activities necessary to ensure the full Block 3F fire-control capabilities support the “find, fix, track, target, engage, assess” kill chain. As of the end of November, only 5 of the 26 events (excluding the gun events) had been completed and fully analyzed. Several WDAs have revealed deficiencies and limitations to weapons employment. An additional 11 WDAs have occurred, but analyses are ongoing. Of the 10 remaining WDAs, 4 are still blocked due to open deficiencies that must be corrected before the WDA can be attempted. The program should correct deficiencies that are preventing completion of all of
the TEMP-required Block 3F WDA events and ensure they are completed prior to finishing SDD.

- Discoveries from the Block 3F WDA events include:
 - AIM-9X and AIM-132 ASRAAM seeker status tone problems
 - Out-of-date launch zones for AIM-120 missiles
 - Pilot Vehicle Interface (PVI) and mission planning problems with the U.S. Navy’s JSOW-C1 missile that, if not corrected, may cause significant weapon employment limitations in the fleet’s ability to attack moving ship targets and enable flexible engagement of land-based targets of opportunity
 - Ongoing radar and fusion deficiencies affecting air-to-air target track stability and accuracy, which could cause reduced missile lethality
 - Multiple hung stores, which typically result in an inflight emergency, occurred with the AIM-9X due to mission systems software and weapon integration deficiencies
 - Problems with integrating the British AIM-132 ASRAAM missile and Paveway IV bomb; changes to address these problems could have unintentionally affected the U.S. AIM-9X and laser-guided bomb capabilities, which may require regression testing of these U.S. weapons.

- In an effort to efficiently accomplish the WDA events, the program dedicated several test aircraft to a WDA surge period during June through August. Although the program had planned to begin WDA events as early as February 2016, the first live weapons event did not occur until July. Delays in starting the Block 3F WDAs were caused by immature software and deficiencies affecting weapons employment. The following table lists the Block 3F WDA events, software versions, scheduled and completion dates, overall results and assessments for each completed live fire event through the end of November. Many of the events were originally blocked from completion due to software deficiencies that had to be addressed using QRC versions of software in order to allow the weapons events to proceed.
FY16 DOD Programs

Block 3F Developmental Testing Weapons Events Accomplished Through November 2016

<table>
<thead>
<tr>
<th>WDA Number</th>
<th>Weapon Event Description</th>
<th>Software Configuration</th>
<th>Scheduled Date Completion Date</th>
<th>Result</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>AMRAAM</td>
<td>3FR5.03</td>
<td>Feb 16 and Jul 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>Initial data analysis indicates that there was an inflight issue that may have affected targeting accuracy. Analysis in process to determine the root cause and impact(s).</td>
</tr>
<tr>
<td>302</td>
<td>AMRAAM with AIM-9X</td>
<td>3FR5.03</td>
<td>Feb 16 and Jul 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>Initial data review indicated that the AIM-9X tones were not as expected and there was no missile post-launch timer indication to the pilot.</td>
</tr>
<tr>
<td>303</td>
<td>AMRAAM fired with target off-boresight</td>
<td>3FR5.03</td>
<td>Feb 16 and Aug 16</td>
<td>Partially successful accomplishment; shot captured key radar capability data but failed primary test objective; shot required control room intervention.</td>
<td>Known issues with outdated F-35 AMRAAM Attack Model in mission systems software resulted in no shoot cues or dynamic launch zone displayed to pilot requiring the control room to provide a “shoot” call to the pilot. Initial data review indicates that there was also no post-launch timer indication to the pilot. Also, weapon quality track was erratic pre- and post-launch. More detailed analyses are pending, following data to be provided by the missile vendor.</td>
</tr>
<tr>
<td>307</td>
<td>2 X AMRAAM</td>
<td>3FR5.03</td>
<td>Jun 16 and Aug 16</td>
<td>Partially successful accomplishment; shot required control room intervention.</td>
<td>The cockpit indication was a guidance failure on the missiles and required control room intervention to confirm the shot parameters and direct the pilot to shoot. More detailed analyses are pending, following data to be provided by the missile vendor.</td>
</tr>
<tr>
<td>308</td>
<td>2 X SDB-I (GBU-39) and 1 X AMRAAM</td>
<td>3FR5.06</td>
<td>Apr 16 and Nov 16</td>
<td>Successful accomplishment of event.</td>
<td>All weapons initially appear to have functioned successfully. Analysis ongoing.</td>
</tr>
<tr>
<td>311</td>
<td>2 X AMRAAM</td>
<td>3FR5.03</td>
<td>Apr 16 and Jul 16</td>
<td>Pending Data Review; shot required control room intervention.</td>
<td>Unsuccessful; also the pilot indications in the cockpit indicated a guidance fail resulting in control room intervention to accomplish the shot. More detailed analyses are pending, following data to be provided by the missile vendor.</td>
</tr>
<tr>
<td>316</td>
<td>AIM-9X fired against a non-maneuvering target</td>
<td>3FR5.03</td>
<td>Feb 16 and Jul 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>Inflight weapon failed on first missile attempt (built-in test failure and no missile tone to the pilot); back-up missile functioned as expected. Deficiency report was written on missile tone anomalies.</td>
</tr>
<tr>
<td>317</td>
<td>AIM-9X fired against a maneuvering target</td>
<td>3FR5.03</td>
<td>Jun 16 and Aug 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>Initial data review indicates that the missile tones were not correct, no dynamic launch zone indication in Dogfight mode and the gun symbology occluded the target in the helmet-mounted display. More detailed analyses on radar track accuracy and radar ranging accuracy following data to be provided by the missile vendor.</td>
</tr>
<tr>
<td>320</td>
<td>JDAM (GBU-31) delivered against a single target using Synthetic Aperture Radar (SAR) map coordinates</td>
<td>3FR5.03</td>
<td>Feb 16 and Jul 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>The test team planned to use a known workaround for minor Launch Acceptability Region (LAR) inaccuracy due to an outdated LAR model in mission systems software. Pilot released the bomb using a “rule of thumb” guidance to determine “in-zone.” JDAM LAR model update in mission systems software is required.</td>
</tr>
<tr>
<td>321</td>
<td>JDAM (GBU-31) delivered against a single target using Bomb-on-Coordinate employment</td>
<td>3FR5.03</td>
<td>Apr 16 and Jul 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
<td>The test team planned to use a known workaround for a minor LAR inaccuracy due to an outdated LAR model in mission systems software. Pilot released the bomb using a “rule of thumb” guidance to determine “in-zone.” Post-mission initial data review indicates that the target elevation values available to the pilot were not consistent between the mission planned terrain elevation, the displayed elevation on the cockpit displays, and the value loaded into the JDAM in the transfer alignment.</td>
</tr>
</tbody>
</table>
FY16 DOD Programs

Block 3F Developmental Testing Weapons Events Accomplished Through November 2016 (CONTINUED)

<table>
<thead>
<tr>
<th>WDA Number</th>
<th>Weapon Event</th>
<th>Software Configuration</th>
<th>Scheduled Date Completion Date</th>
<th>Result</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>JDAM (GBU-31) X 2 Ripple release on two targets</td>
<td>3FR5.03</td>
<td>Jun 16</td>
<td>Aug 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
</tr>
<tr>
<td>323</td>
<td>JDAM (GBU-31) Pattern on target (multiple weapons)</td>
<td>3FR5.05</td>
<td>Jul 16</td>
<td>Oct 16</td>
<td>Successful accomplishment of event and sufficient data collected for weapons integration analyses.</td>
</tr>
<tr>
<td>324</td>
<td>SDB-I (GBU-39) X 2 on two targets</td>
<td>3FR5.03</td>
<td>May 16</td>
<td>Aug 16</td>
<td>The test team used a planned workaround for BRU-61; using the new dual-voltage BRU in single-voltage mode due to a mission systems software limitation.</td>
</tr>
<tr>
<td>325</td>
<td>SDB-I (GBU-39) Single release</td>
<td>3FR5.03</td>
<td>Feb 16</td>
<td>Jul 16</td>
<td>The test team used a U.S. non-operationally representative BRU-61, one with only a single voltage unit, to complete this WDA event. This older BRU-61 is representative for partner operations.</td>
</tr>
<tr>
<td>328</td>
<td>UK Paveway IV bomb</td>
<td>3FR5.05</td>
<td>Jul 16</td>
<td>Oct 16</td>
<td>Weapons integration deficiencies were identified during this event and deficiency reports completed.</td>
</tr>
<tr>
<td>SDB Seps</td>
<td>SDB-I (GBU-39) multiple ripple release for flight sciences separation test points, completed on mission systems aircraft.</td>
<td>3FR5.03</td>
<td>Feb 16</td>
<td>Jul 16</td>
<td>The test team used a U.S. non-operationally representative BRU-61, one with only a single voltage unit, to complete this WDA event. This older BRU-61 is representative for partner operations. Awaiting data delivery for detailed analysis.</td>
</tr>
</tbody>
</table>

- The remaining 10 events are planned to be completed over the next several months, as the program provides versions of Block 3F software with necessary deficiency fixes to allow the rest of the events to proceed. The remaining events are complex multi-weapon, multi-target, and advanced threat presentations. Whether all WDAs will be completed with the final planned increment of Block 3F software – version 3FR6 – released in December is still to be determined, but several key deficiency fixes related to weapons employment are apparently not included and the probability of additional discoveries during the remaining weapons test events is high, based on results to date.

Gun Testing

- All three variants add gun capability with Block 3F. The F-35A gun is internal; the F-35B and F-35C each use a gun pod. Differences in the outer mold-line fairing mounting make the gun pods unique to a specific variant, i.e., a gun pod designated for an F-35B cannot be mounted on an F-35C aircraft.

- Flight sciences testing of the F-35A internal gun was completed in May 2016. The first firing of the gun in flight occurred October 30, 2015, and the entire flight sciences test effort consisted of 11 flights over the 7-month period. Testing revealed that the small doors that open when the gun is fired induce a yaw (i.e., sideslip), resulting in gun aiming errors that exceed accuracy specifications. As a result, software changes to the flight control laws were needed to enable adjustments, which are still to be determined by flight testing, to cancel out the yaw when the gun doors are open. These control law changes, and the resulting regression testing, delayed the start of gun accuracy flight testing on mission systems test aircraft until December 2016, at the earliest. Since no mission-systems-capable developmental test aircraft were built with an internal gun, the program modified one of the operational test F-35A aircraft (AF-31) to conduct the needed gun testing events. Until testing is completed on AF-31, it is unknown if the F-35 gun system, aimed by the Gen III HMDS, will meet accuracy requirements for effective air-to-air and air-to-ground gun employment.
• The program has conducted ground testing of the F-35B gun pod and plans to start airborne testing in January 2017. Initial ground firing of the F-35C gun pod occurred in mid-November 2016 and airborne gun testing is planned to start in March 2017. New discoveries, as well as determining the amount of adjustment to the flight control laws to counter the pitching moments induced by firing the gun pod, are likely.

• Accuracy testing of the gun with the HMDS has not yet been completed and continues to be delayed as new discoveries are made. Hence, the effectiveness of the gun, aimed via the gunsight in the HMDS, is still unproven for both air-to-air and air-to-ground gun employment. The effects of the canopy transparency on gun aiming — i.e., the pilot aiming the gun via the HMDS gunsight looking through the thick canopy material, associated distortions, and attempted software-programmed corrections — are not yet characterized.

• Although aimed firing of the gun had yet to occur, both DT and OT pilots have flown with the air-to-ground gun strafing symbology displayed in the helmet and reported concerns that it is currently operationally unusable and potentially unsafe to complete the planned aimed gun fire testing. These deficiencies may cause further delays to the start of gun accuracy flight testing. Also, testing of the air-to-air symbology by both DT and OT pilots revealed that the gunsight is very unstable when tracking a target aircraft. Fixing these deficiencies may require changes to the mission systems software that controls symbology to the helmet, or to the radar software, as the program is working to finalize the last version of Block 3F. Plans to begin aimed flight testing of the gun on the F-35A were planned for this fall, but will likely not start until December 2016, at the earliest.

• Because of the late testing of the gun and likelihood of additional discoveries, the program’s ability to deliver gun capability with Block 3F before IOT&E is at risk, especially for the F-35B and F-35C, which have not yet fired the gun in flight.

Weapons Demonstration Events by the Operational Test Teams

• The JOTT and the associated Service operational test squadrons (VMX-1, 31TES, and 422TES) assigned to Edwards AFB, California, and Nellis AFB, Nevada accomplished 6 air-to-air missile events, 19 GBU-31/32 JDAM air-to-ground events, and 28 GBU-12 laser guided bomb events during 2016. For one of these events, the team accomplished one combined AMRAAM missile with one GBU-12 laser guided bomb event, as described in the AMRAAM Air-to-Air Missile Event Table on the following page. These weapon delivery events were accomplished on range complexes at the Naval Weapons Center China Lake, California; Marine Corps Air Station Yuma, Arizona; and Eglin AFB, Florida. All of the OT weapon events were planned and accomplished in operationally representative scenario profiles constructed to evaluate the F-35’s ability to find-fix-track-target-engage-assess airborne and fixed and moving ground targets.

• The following tables and accompanying assessments show the weapon events, aircraft Block configuration, date accomplished, and results.
AMRAAM Air-to-Air Missile Events Accomplished by Operational Test Teams

<table>
<thead>
<tr>
<th>Event Identifier</th>
<th>Event Description</th>
<th>Aircraft Block Software Configuration</th>
<th>Date Accomplished</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDA-108</td>
<td>Cruise Missile Defense</td>
<td>3IR6.01</td>
<td>May 16</td>
<td>This event was a re-shoot of a developmental test event. The reshoot was required by the operational test community because of control room workarounds needed during the DT event. The OT profile was successful.</td>
</tr>
<tr>
<td>OT 2.1</td>
<td>2 F-35 aircraft in MADL network attacking one F-16 drone target with jamming</td>
<td>2BR5.3</td>
<td>Aug 16</td>
<td>Profile did not meet test objectives due to issues with the target presentation. Data analysis in progress.</td>
</tr>
<tr>
<td>OT 2.2</td>
<td>2 F-35 aircraft in MADL network defending against an off-boresight attacker</td>
<td>2BR5.3</td>
<td>Aug 16</td>
<td>Partially successful. Missile guided to objective target; however secondary objective compromised due to issues with the target presentation. Data analysis in progress.</td>
</tr>
<tr>
<td>OT 2.3</td>
<td>2 F-35 aircraft in MADL network vs 2 jamming equipped F-16 drones</td>
<td>2BR5.3</td>
<td>Aug 16</td>
<td>Profile did not meet test objectives due to issues with the target presentation. Data analysis in progress.</td>
</tr>
<tr>
<td>OT 2.4</td>
<td>F-35 combined Air-to-Air AMRAAM and GBU-12 Air-to-Ground profile</td>
<td>2BR5.3</td>
<td>Aug 16</td>
<td>Primary test objective to confirm ability of the F-35 to support a laser guided bomb to impact while simultaneously supporting a missile inflight was successful. Secondary objective was unsuccessful due to issues with the target presentation.</td>
</tr>
<tr>
<td>MAWTS-2</td>
<td>2 F-35 aircraft attacking a high closure rate supersonic target</td>
<td>2BR5.3</td>
<td>Aug 16</td>
<td>This profile was a USMC engagement scenario to support ongoing tactics development. Profile objective was successful</td>
</tr>
</tbody>
</table>

Air-to-Air General Observations

- The operational test teams completed the missile profiles in accordance with the DOT&E-approved test plan; however, some weapons integration objectives were not successful due to the drone target presentation failures (details are classified). The failures in the drone target presentations prevented either the primary or secondary test objectives to verify the F-35’s capability to complete the find-fix-track-target-engage-assess fire control thread. The test team is conducting data analyses to determine whether engineering characterization runs or re-shooting of the profiles are required.

- Although four of the five missile events fell short of addressing all of the specific data objectives, they were successful in identifying key deficiencies in the ability of the aircraft to support selected missile functionality, stores management system anomalies, and the instability of the shoot cues provided to the pilot to support missile employment. Data analyses to identify root cause for all the noted deficiencies are ongoing and the operational test team will recommend specific mission systems software fixes to address the noted deficiencies.

<table>
<thead>
<tr>
<th>Weapon Type</th>
<th>Number of Weapons Events</th>
<th>F-35 Variant****</th>
<th>Date Accomplished</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBU-12 LGB</td>
<td>28 Laser Guided Bomb (LGB) Events*</td>
<td>21 F-35A</td>
<td>Jan to July 2016</td>
<td>22 successful/6 partially successful*** events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 F-35B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBU-31 or GBU-32 JDAM</td>
<td>15 GBU-31 (BLU-109) Events (8 inert/7 live)**</td>
<td>F-35A</td>
<td></td>
<td>10 successful/5 partially successful***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 inert GBU-32 (Mk-83) Events**</td>
<td>F-35B</td>
<td></td>
</tr>
</tbody>
</table>

*GBU-12 OT events were conducted against an operationally representative mix of fixed and moving targets; self-, airborne buddy-, and ground tactical control party target-lasing; target cueing via voice, VMF digital, and F-35 shoot-list sharing via MADL.
**JDAM GBU-31/32 events were accomplished against an operationally representative mix of fixed target coordinates consisting of: pre-planned targeted coordinates, F-35 self-targeting using SAR map and EOTS derived coordinates, and target cueing via voice, VMF digital, and F-35 shoot-list sharing via MADL.
***Air-to-Ground fully successful missions achieved weapon miss distances within expected mean radial error. Partially successful missions were cases where the weapon was employed but with larger miss distances and observed mission systems issues described below.
****Mission Systems software for all variants was 2BS5.2 or 2BS5.3
Air-to-Ground General Observations

- Although initial observations from weapons integration can be characterized in general, detailed data analyses are ongoing to determine precise mean radial error results for both the LGB and JDAM weapons delivery events, and to identify root causes for the observed mission systems deficiencies and weapon delivery issues.
- The JDAM predictive launch acceptability region (LAR) and dynamic launch zone (DLZ) information were consistently in error compared to the expected pilot drop cues calculated from both the JDAM truth model and initial DT characterizations. In the majority of the OT JDAM drops, there were wide discrepancies between the LAR presentations to the pilot via the HMDS, the corresponding presentations on the in-cockpit controls and displays, and the actual JDAM in-weapon LAR. In a number of cases, the mission systems bombing cues available to the pilot via the Tactical Situation Display on the Panoramic Cockpit Display were in conflict with the HMDS shoot cues and the DLZ. This inconsistency is both confusing to the pilot and can result in erratic and inaccurate weapon impact relative to the target desired impact point. Also, the tactical displays available to the pilot did not allow the pilot to confirm the actual target coordinates passed to the weapon. This confirmation of the in-weapon target coordinates is usually required by rules of engagement (ROE) in operational areas in order to enable positive target information confirmation to the ground controllers prior to clearance to drop any weapon. The F-35 in the Block 2B or Block 3i configuration is currently able to comply with these ROE.
- In general, pilots were able to use the F-35 Synthetic Aperture Radar (SAR) mapping function to derive weapons quality coordinates, which are adequate to deliver ordinance on target. Pilots were also able to share the SAR-map-derived coordinates between flight members to validate and confirm target positions and coordinates prior to releasing weapons.
- The EOTS was not able to provide the pilot with sufficient resolution at tactical employment ranges to enable a positive ID on the intended target. However, the EOTS generally was able to track targets, both moving and stationary, but only after the target identification was confirmed by an external source or multiple sources. However, there are still significant tracking limitations, as evidenced by a new, open Category I-High deficiency titled “EOTS TFLIR Tracker Unable to Point or Area Track.” The EOTS system also was able to generate accurate weapon quality coordinates when cued to the correct target.
- The lack of any lead-point-compute or lead-laser guidance in the F-35 EOTS system required rule-of-thumb pilot techniques to provide limited capability with the GBU-12 on moving targets. The OT moving target attacks were generally successful; however, the successes relied on high levels of pilot experience and were not enabled by the F-35 mission systems. While the rule-of-thumb procedures allowed the technical requirements of the weapons delivery event to be met, they did not allow the pilot to maintain positive target ID using the PVI procedures to designate, track, and employ the weapon for the full attack timeline. Most importantly, these procedures would likely not have met the current positive target ID requirements for operational employment rules of engagement. Due to these limitations, which threaten the effectiveness of the F-35 to engage moving targets, the program and Services are exploring other options to meet this ORD requirement. One option, which is being considered by the Air Force, is to integrate the GBU-49, a fielded weapon that has similar size, weight, and interfaces as the GBU-12, or a similar weapon that does not require lead-laser guidance, in Block 3F. Otherwise, the program plans to develop and field lead-laser guidance in Block 4.2, which would be delivered in CY22, at the earliest. However, because of the similarities, the GBU-49 could be quickly integrated with Block 3F to provide a robust moving target capability for the F-35 much earlier.
- Pilots were able to use the digital Variable Message Format (VMF) system to communicate between F-35 aircraft and tactical ground controllers. The VMF links and data provided the expected data to both the pilot and the ground parties. In previous developmental testing, the VMF has exhibited significant issues with both reliability and accuracy; however, in the OT events the system was both reliable and accurate. Data analysis is ongoing to determine the differences between the uses of VMF in developmental testing compared to the operational weapons test events. The ground parties used in the operational testing were equipped with the most up-to-date software, firmware, and hardware and were staffed by fully qualified ground controllers.
- Pilots experienced multiple inflight failures of the Fuselage Remote Interface Unit (FRIU), an electronic component that provides the interface between the aircraft avionics and all weapon stations, which often disrupted the ground attack profile. The failures resulted in degraded weapons at critical phases of the target attack profile and required the pilots to abort the attack, reset the FRIU to regain control and communications with the weapon, and then recommit to a follow-on target attack. Such target attack interruptions are unacceptable for combat operations.
- Pilots consistently rated the Offboard Mission Support (OMS) mission planning system as cumbersome, unusable, and inadequate for operational use. As a result, the time required for operational planners to build a mission plan is excessive and cannot support current planning cycle requirements for multiple aircraft combat missions. Additionally, the post-mission download times are too long to support operational debriefing requirements.

Pilot Escape System

- Testing of the pilot escape system in CY15 showed that the risk of serious injury or death is greater for lighter-weight pilots, which led to the decision by the Services to restrict pilots weighing less than 136 pounds from flying the F-35.
In an effort to reduce this risk, the program developed three modifications associated with the escape system and began testing them in late CY15 and throughout CY16. These modifications include:
- Reduction in the weight of the pilot’s Generation III helmet (the new helmet is called Gen III Lite) to reduce the effect of forces on the pilot’s neck during the ejection sequence.
- Installation of a switch in the seat that allows lighter-weight pilots to select a slightly delayed activation of the main parachute. This delay allows the drogue chute, which deploys almost immediately during the ejection sequence, to further slow and align the pilot before the main parachute deploys. This delay is designed to reduce the severity of loads on the neck experienced during opening shock.
- The addition of a Head Support Panel (HSP) between the risers of the parachute designed to prevent the pilot’s neck from “snapping back” through the risers during the opening of the main parachute.

Concerned with the problems with the escape system and the possibility of more discoveries, the U.S. Air Force asked the JPO in June 2016 to gather and provide information on potential costs and challenges to changing ejection seats from the Martin Baker US16E seat currently installed in all F-35 variants to the United Technologies ACES 5 seat as an alternative for the F-35A.

After prototypes of the design changes were available, twenty-two qualification test cases were completed between October 2015 and September 2016, with variations in manakin weight, speed, altitude, helmet size and configuration, and the seat switch settings. Seven of the tests were accomplished with the lightweight (103 lbs) manikin. Data from these tests showed that the HSP significantly reduced neck loads under conditions that forced the head backwards, inducing a rearward neck rotation, during the ejection sequence. Data also showed that the seat switch delay reduced the opening shock from the main parachute for lighter-weight pilots at speeds greater than 160 knots. Results of the additional tests were provided to the Services in late CY16 to update their risk assessments associated with ejections. Despite the improved results, the extent to which risks have been reduced to lighter-weight pilots (i.e., less than 136 pounds) by the modifications to the escape system and helmet is still to be determined by these analyses. If the Services accept the risk associated with the modifications to the escape system for pilots weighing less than 136 pounds, restrictions will likely remain in effect until aircraft have the modified seat with the switch and HSP installed, and the Gen III Lite helmets are procured and delivered to the applicable pilots in the fleet.

The program plans to start retrofitting fielded F-35s with the modifications to the ejection seats in February 2017 and delivering aircraft with the upgraded seat in Lot 10, starting in January 2018. The Gen III Lite helmets will be included with the Lot 10 aircraft delivery, and will be delivered starting in November 2017. If these delivery timelines are met, the Air Force may open F-35 pilot training to lighter-weight pilots (i.e., below 136 pounds) as early as December 2017.
- Part of the weight reduction to the Gen III Lite HMDS involved removing one of the two visors (one dark, one clear). As a result, pilots that will need to use both visors during a mission (e.g., during transitions from daytime to nighttime), will have to store the second visor in the cockpit. However, there currently is not adequate storage space in the cockpit for the visor; the program is working a solution to address this problem.
- The program has yet to complete additional testing and analysis needed to determine the risk of pilots being harmed by the Transparency Removal System (which shatters the canopy first, allowing the seat and pilot to leave the aircraft) during ejections in other than ideal, stable conditions (such as after battle damage or during out-of-control situations). Although the program completed an off-nominal rocket sled test with the Transparency Removal System in CY12, several aspects of the escape system have changed since then, including significant changes to the helmet, which warrant additional testing and analyses. DOT&E recommends the program complete these tests, in a variety of off-nominal conditions, as soon as possible, so that the Services can better assess risk associated with ejections under these conditions.

Static Structural and Durability Testing
- Structural durability testing of all variants using full-scale test articles continues, with plans for each variant to complete three full lifetimes (one lifetime is 8,000 equivalent flight hours, or EFH). Although all variants are scheduled to complete testing before the end of SDD, the complete teardown, analyses, and damage assessment and damage tolerance reporting is not scheduled to be completed until August 2019. Testing on all variants has led to discoveries requiring repairs and modification to production designs and retrofits to fielded aircraft.
- F-35A durability test article (AJ-1) completed the second lifetime of testing, or 16,000 EFH in October 2015. After completing second lifetime inspections, third lifetime testing began on March 11, 2016. As of November 16, 2016, 20,000 EFH, or 50 percent of the third lifetime had been completed. Third lifetime testing is projected to complete in December 2017.
- F-35B durability test article (BH-1) completed 14,051 EFH by November 17, 2016, which is 6,051 hours (76 percent) into the second lifetime. Due to the amount of modifications and repairs to bulkheads and other structures in the current F-35B ground test article, it may not be adequate to continue testing and a new one may be needed and durability testing repeated to ensure adequate lifetime testing is completed. The program needs to conduct an assessment to determine the extent to which the results of further durability testing are representative of production aircraft and if necessary procure another test article for the third life testing.
- Two main wing carry-through bulkheads, FS496 and FS472, are no longer considered production-representative due to the extensive repairs that have been required. The program plans to continue durability testing, repairing the bulkheads as necessary, through the second lifetime (i.e., 8,001 through 16,000 EFH), which is projected to be complete in February 2017.

- Prior to CY16, testing was halted on September 29, 2013, at 9,056 EFH, when the FS496 bulkhead severed, transferred loads to, and caused cracking in the adjacent three bulkheads (FS518, FS472, and FS450). The repairs and an adequacy review of the repairs to support further testing were completed on December 17, 2014, when the program determined that the test article could continue testing. Testing restarted on January 19, 2015, after a 16-month delay.

- The program determined that several of the cracks discovered from the September 2013 pause at 9,056 EFH were initiated at etch pits. These etch pits are created by the etching process required prior to anodizing the surface of the structural components; anodizing is required for corrosion protection. Since the cracks were not expected, the program determined that the etch pits were more detrimental to fatigue life than the original material design suggested. The program is currently developing an analysis path forward to determine the effect on the overall fatigue life.

- After the durability test completed 11,915 EFH on August 13, 2015, the load cycling was stopped to allow removal and replacement of the FS496 bulkhead outer segments (both left- and right-hand sides), removal and replacement of the left-hand-side aft fuselage close-out frame, repairs to the engine thrust mount shear webs, installation of fasteners at the FS518 frame, maintenance of the right-hand-side EHAS panel, repairs to the right-hand-side of the mid-fairing longeron, and repairs to the FS556 upper arch. The entire repair activity took about 9 months, with an 85-EFH testing effort conducted in early March 2016 that reached 12,000 EFH.

- Testing resumed in early May 2016, reached 13,000 EFH in mid-June 2016, and then stopped for another month to repair the FS472 lower flange.

- Testing resumed in mid-July. At 13,086 EFH, cracks were discovered on the forward fuselage including FS236 bulkhead, left-hand-side FS223 frame, and right-hand-side FS191 upper frame.

- Testing continued with buffet loads until it reached 13,980 EFH before stopped to implement fuselage repairs in August 2016.

- Testing resumed on September 17 and had reached 14,051 EFH on November 17, 2016.

- F-35C durability test article (CJ-1) completed the second lifetime of testing, or 16,000 EFH on October 29, 2016. The third lifetime testing is scheduled to begin in late December 2016.

- In October 2015 with 13,731 EFH accomplished, cracks were discovered on the left-hand side and right-hand side of one wing front spar and one left-hand-side wing forward root rib; this discovery was considered significant because wing spar and wing root rib are primary structural components and the cracks were not predicted by the finite element model (FEM) used in the design of these components. The repairs took over 3 months before the test resumed in early February 2016.

- On February 9, 2016, with 13,827 EFH accomplished, a crack was found on the left-hand-side inverter/converter/controller and power distribution center/inverter bay floor. Testing continued with catapult and trap load cycling.

- In late February 2016 with 13,931 EFH accomplished, cracks were found on the left- and right-hand sides of the FS496 bulkhead flanges, which were deemed significant. The repairs took another 3 months to complete before the test resumed in May 2016.

- In August 2016 with 14,831 EFH accomplished, small cracks were found on the right-hand-side armpit (below wing root) and were quickly repaired with a simple blend.

- In August 2016 with 14,892 EFH accomplished, cracks were found on the FS518 lower frame and some nearby broken fasteners. A weld repair for the titanium frame was completed. Further investigation revealed cracks on the right- and left-hand-side wing rear spars. While a repair disposition was being developed, the durability test resumed with loading only for catapult takeoffs and carrier trap landings.

- The program plans to use Laser Shock Peening (LSP), a mechanical process designed to add compressive residual stresses in the materials, in an attempt to extend the lifetime of the FS496 and FS472 bulkheads in the F-35B. The first production line cut-in of LSP will start with Lot 11 F-35B aircraft. Earlier Lot F-35B aircraft will undergo LSP processing as part of a depot modification. Testing is proceeding in three phases: first, coupon-level testing to optimize LSP parameters; second, element-level testing to validate LSP parameters and quantify life improvement; and third, testing of production and retrofit representative articles to verify the service life improvements. All three phases are in progress, with full qualification testing scheduled to be completed in August 2017. As of December 1, 2016, 122 of 211 durability tests had been conducted with results within expectations, which is a 58 percent completion.

Joint Simulation Environment (JSE)

- The JSE is a man-in-the-loop, mission systems software-in-the-loop simulation developed to meet the operational test requirements for Block 3F IOT&E. The Program Office made the decision in September 2015 to stop development on the contractor’s effort to build a similar system, the Verification Simulation (VSim), instead tasking the Naval Air Systems Command (NAVAIR) to lead the building of a government-owned Joint Simulation Environment (JSE), with the
contractor providing only the F-35 aircraft and sensor models. However, negotiations for the F-35 models have not yet been successful, which has prevented NAVAIR from fully defining the simulation’s architecture and environment (the virtual software environment in which aircraft, sensor, and threat models interact with one another).

- While the Program Office continued to negotiate with the contractor, and had success in meeting the hardware requirements (facilities, cockpits, etc.), the lack of definition of the simulation environment makes any integration schedule not credible. In the next year, the program must acquire the F-35 models, integrate them into an as-yet undeveloped and undeveloped battlespace environment, complete development of several dozen threat aircraft and surface system models, ensure that aircraft sensor models correctly perceive the threat system models, and validate the entire simulation. Previous efforts of this magnitude have taken several years, so it is unlikely that NAVAIR will complete the project as planned in time to support IOT&E. Current Program Office estimates are that JSE will deliver late to need in May 2019, but before the end of IOT&E. Verification, Validation, and Accreditation (VV&A) activities remained effectively stalled in 2016 and are also a very high risk to timely completion of the simulation.

- Without a high-fidelity simulation, the F-35 IOT&E will not be able to test the F-35’s full capabilities against the full range of required threats and scenarios. Nonetheless, because aircraft continue to be produced in substantial quantities (essentially all of which require modifications and retrofits before being used in combat), the IOT&E must be conducted without waiting for the JSE, to demonstrate F-35 combat effectiveness under the most realistic conditions that can be obtained in flight testing, once the aircraft hardware and software meet the IOT&E entrance criteria, which is expected to occur long before the completion and successful VV&A of JSE. It is now clear that the JSE will not be available and accredited in time to support the Block 3F IOT&E. The currently approved IOT&E detailed test design, which was developed entirely around open-air flight testing, mitigates the lack of an adequate simulation environment as much as possible.

Live Fire Test and Evaluation (LFT&E)

F-35C Full-Scale Aft Fuselage and Empennage Structure Test

- The F-35 LFT&E program completed the F-35C full-scale aft fuselage and empennage structure tests. The Navy’s Weapons Survivability Laboratory in China Lake, California, accomplished three test events using the CG:0001 full scale structural test article. The tests evaluated the ability of the vertical tail and aft boom structure to withstand damage from high-explosive incendiary (HEI) projectile and simulated Man-Portable Air Defense System (MANPADS) threats. A preliminary review of the test results indicates that:
 - The F-35 vertical tail is capable of withstanding an HEI projectile impact. The threat can target and fail one attachment lug but the remaining lugs demonstrated their ability to handle normal flight loads after the impact. However, the pilot receives no alerts from the Integrated Caution, Advisory and Warning (ICAW) system from this type of structural damage, so there is a potential that a damaged vertical tail could fail without warning the pilot if the pilot demands higher than normal flight loads on the vertical tail after the damage occurs.
 - Two MANPADS shots were completed against the aft boom structures, which support the horizontal and vertical tails. Combined with results from earlier tests on an F-35A and F-35B test articles, these tests showed that the structures are sufficiently robust against these threats to retain all control surfaces. Although damage to a single control surface actuator is possible, earlier flight control tests showed sufficient controllability within a limited flight envelope to allow controlled flight back to a safe area where the pilot could eject.
 - The MANPADS tests demonstrated the potential for damage to the fuel-draulics system – the engine fuel-based hydraulics system – which can result in a sustained fire leading to further damage to the aircraft and a pilot ejection over enemy territory. The data will be used to support an assessment in 2017 that will determine the contribution of this issue to the overall aircraft vulnerability.

- While extended fires occurred in the MANPADS tests, there has been no effort expended to determine what catastrophic damage might result and the timeframe for that to occur. Current procedures are for an immediate ejection upon determination of a sustained fire. However, if the time-to-failure could be established for this sort of fire, it might allow the pilot time to depart a combat area and eject somewhere relatively safe. Further analysis of these test results and the related issue are needed.

PAO Shut-Off Valve

- The program has not provided an official decision to reinstate this vulnerability reduction feature. There has been no activity on the development of the PAO-shut-off valve technical solution to meet criteria developed from 2011 live fire test results. As stated in several previous reports, this aggregate, 2-pound vulnerability reduction feature, if installed, would reduce the probability of pilot incapacitation, decrease overall F-35 vulnerability, and prevent the program from failing one of its vulnerability requirements.

Vulnerability to Unconventional Threats

- The full-up, system-level chemical-biological decontamination test on an SDD aircraft, which began 4QFY16 and is scheduled to end in 2QFY17 at Edwards AFB, was supported by two risk-reduction events:
 - A System Integration Demonstration of the proposed decontamination equipment and shelter was conducted on an F-16 test article during 1QFY15 at Edwards AFB to simulate both hot air chemical and hot/humid air biological decontamination operations. Extensive condensation inside the shelter and on the test article during the
An FY16 DOD Programs

A 2QFY16 event demonstrated that a modified system process and a better insulated shelter can maintain adequate temperature and humidity control inside the shelter, even in a cold-weather environment.

- The test plan to assess chemical and biological decontamination of pilot protective equipment is not adequate. Compatibility testing of protective ensembles and masks has shown that the materials survive exposure to chemical agents and decontamination materials and processes, but the program has neither tested nor provided plans for testing the HMDS currently being fielded.

Gen II HMDS compatibilities were determined by analysis, comparing HMDS materials with those in an extensive DOD aerospace materials database. A similar analysis is planned for the Gen III HMDS design. However, even if material compatibilities were understood, there are no plans to demonstrate a process that could adequately decontaminate either HMDS from chemical and biological agents.

- The Joint Program Executive Office for Chemical and Biological Defense approved initial production of the F-35 variant of the Joint Service Aircrew Mask (JSAM-JSF) during 1QFY16. This office and the F-35 Joint Program Office are integrating the JSAM-JSF with the HMDS, which is undergoing Safety of Flight testing.

- The Navy evaluated an F-35B aircraft to the EMP threat level defined in Military-Standard-2169B. Follow-on tests on other variants of the aircraft, including a test series to evaluate any Block 3F hardware/software changes, are planned for FY16-17.

Gun Ammunition Lethality and Vulnerability

- The 780th Test Squadron at Eglin AFB, Florida, completed the ground-based lethality test of the PGU-47/U Armor Piercing High Explosive Incendiary with Tracer (APHEI-T) round (also known as Armor Piercing with Explosive (APEX)) against armored and technical vehicles, aircraft, and personnel-in-the-open targets. Ground-based lethality tests for the APEX correlated well with pre-test predictions for the round penetrations, but potential problems were discovered with fuze functioning when impacting rolled homogeneous armor at high obliquity. Nammo, the Norwegian manufacturer, conducted additional testing to identify the cause of the dudged rounds during the ground tests and subsequently modified the fuze design to increase reliability. The program will determine the effect of the ground-based lethality test data on the ammunition lethality assessment.

- Per the current mission systems software schedule, the weapons integration characterization of the gun and sight systems will not be ready for the air-to-ground gun strafe lethality tests until December 2016, at the earliest. Strafing targets will include a small boat, light armored vehicle, technical vehicle (pickup truck), and plywood mannequins for each round type tested.

Operational Suitability

- The operational suitability of all variants continues to be less than desired by the Services. Operational and training units must rely on contractor support and workarounds that would be challenging to employ during combat operations. In the past year some metrics of suitability performance have shown improvement, while others have been flat or declined. Most metrics still remain below interim goals to achieve acceptable suitability by the time the fleet accrues 200,000 flight hours, the benchmark set by the program and defined in the Operational Requirements Document (ORD) for the aircraft to meet reliability and maintainability requirements. This level of maturity is further stipulated as 75,000 flight hours for the F-35A, 75,000 flight hours for the F-35B, and 50,000 flight hours for the F-35C.

- Reliability growth has stagnated, so it is highly unlikely that the program will achieve the ORD threshold requirements at maturity for the majority of reliability metrics, most notably the Mean Flight Hours Between Critical Failures, without redesigning aircraft components.

- Aircraft fleet-wide availability averaged 52 percent for 12 months ending October 2016, compared to the modest goal of 60 percent. It is important to note that the expected combat sortie rates will require significantly greater availability than 60 percent; therefore, if the F-35 is to replace legacy aircraft for combat taskings, availability will likely need to improve to near 80 percent.

- Monthly availability had been averaging in the mid-30s to low-40s percent for the 2-year period ending September 2014. Monthly availability then increased rapidly and significantly from October to December, peaking at 56 percent in December 2014. However, since then it has remained flat, centering around the low-50s percent with no strong improving trend over time.

- Only two out of nine reliability metrics that have ORD requirement thresholds have improved since last year’s report. All nine are below the interim goals that were set to determine if the metrics will meet the thresholds by maturity. None are within 5 percent of their interim goal, whereas previously, several of these metrics were reported as being above or within 5 percent of their interim goal. In particular, reliability metrics related to critical failures have decreased over the past year. This decrease in reliability correlates with the simultaneously observed decline in the Fully Mission Capable (FMC) rate for all variants, which measures the percentage of aircraft not in depot status that are able to fly all defined F-35 missions. The fleet-wide FMC rate peaked in December 2014 at 62 percent and has fallen steadily since then to 21 percent in October 2016.

- In addition to the nine ORD metrics, there are three contract specification metrics, Mean Flight Hours Between Failure scored as “design controllable,” or DC, one for each variant. DC failures are equipment failures due to design flaws considered to be the fault of the contractor, such as components not withstanding stresses expected to be found hot/humid air biological decontamination event indicated the need for process and shelter modifications.

- A 2QFY16 event demonstrated that a modified system process and a better insulated shelter can maintain adequate temperature and humidity control inside the shelter, even in a cold-weather environment.
in the normal operational environment. It does not include failures caused by improper maintenance, or caused by circumstances unique to flight test. This metric exhibited the highest rate of the growth in the past and, for this metric, all variants are currently above program target values for this stage in development. However, since May 2015, DC reliability has generally decreased or remained flat as well.

- Although most measures of reliability have not improved significantly over the past year, three of six measures of maintainability have improved slightly. Maintainability metrics record the amount of time required to troubleshoot and repair faults on the aircraft. Additionally, the number of flight hours each aircraft flies per month, known as the utilization rate, has also increased marginally.
- F-35 aircraft spent 9 percent more time down for maintenance than intended (fleet average of 16.4 percent compared to 15 percent goal), and waited for parts from supply for 71 percent longer than the program targeted (fleet average of 17 percent compared to goal of 10 percent). At any given time, from 10 to 20 percent of aircraft were in a depot facility or depot status at the home base for major rework or planned upgrades. Of the remaining aircraft not in any depot status, on average less than a third were able to fly all missions of even a limited capability set that is associated with the Block 2B or Block 31 aircraft.
- Accurate suitability measures rely on adjudicated data from fielded operating units. A Joint Reliability and Maintainability Evaluation Team (JRMET), composed of representatives from the Program Office, the JOTT, the contractor (Lockheed Martin), and Pratt and Whitney (for engine records), reviews maintenance data to ensure consistency and accuracy for reporting measures; government representatives chair the team. However, the Lockheed Martin database that stores the maintenance data, known as the Failure Reporting and Corrective Action System (FRACAS), was not in compliance with U.S. Cyber Command information assurance policies implemented in August 2015 through late summer of 2016. Because of this non-compliance, government personnel were not able to access the database via government networks, preventing the JRMET from holding regularly scheduled reviews of maintenance records for nearly a year, other than a few ad hoc reviews. Regular JRMET meetings resumed in September 2016, but the program is currently working through reviewing a large backlog of un-adjudicated field data. The program restarted publishing monthly reliability and maintainability (R&M) status reports from adjudicated data in October 2016, after roughly a year-long hiatus.

F-35 Fleet Availability

- Aircraft availability is determined by measuring the percent of time individual aircraft are in an available status, aggregated over a reporting period (e.g., monthly). The program assigns aircraft that are not available to one of three categories of status: Not Mission Capable for Maintenance (NMC-M); Not Mission Capable for Supply (NMC-S); and depot status.
- Program goals for these not-available categories have remained unchanged since 2014, at 15 percent for NMC-M, 10 percent for NMC-S, and 15 percent of the fleet in depot status. Depot status is primarily for completing the modifications required to bring currently fielded aircraft in compliance with their expected airframe structural lifespans of 8,000 flight hours and to incorporate additional mission capability. The majority of aircraft in depot status are located at dedicated depot facilities for scheduled modification periods that can last several months, and they are not assigned as a part of the operational or training fleet during this time. A small portion of depot activity can occur in the field when depot field teams conduct a modification at a main operating base, or affect repairs beyond the capability of the local maintenance unit. Similar to being at a depot facility, aircraft are temporarily assigned to depot status during these periods and are not considered a part of the operational or training fleet.
- These three not-available category goals sum to 40 percent, resulting in a fleet-wide availability goal of 60 percent for 2016.
- In addition to these overall program goals, the program has implemented a Performance Based Logistics (PBL) construct with Lockheed Martin that ties contract incentive awards to a slightly different set of tailored fleet performance targets. These tailored targets prioritize improvement efforts for Marine Corps F-35B performance as the first branch to declare Initial Operational Capability (IOC), and also because the F-35B variant has shown the lowest overall availability performance. Current PBL-based goals are 53 percent availability, 35 percent FMC, and 70 percent mission effectiveness rates for the F-35B training and operational fleets assigned to Marine Corps Air Station (MCAS) Beaufort and MCAS Yuma. The majority of the incentive structure is tied to these goals. To ensure Lockheed Martin continues to try to improve performance across the board, a smaller portion of the incentive fee is tied to overall fleet performance metrics of 60 percent F-35A, 50 percent F-35B, and 60 percent F-35C availability, regardless of operating site.
- Aircraft monthly availability averaged 52 percent for the 12-month period ending October 2016 in the training and operational fleets, with a maximum availability of 55 percent in May 2016 and a minimum availability of 44 percent in October 2016. This is only a minor improvement over the average 51 percent monthly availability reported in the FY15 DOT&E Annual Report for the 12 months ending October 2015. Further, some groups of aircraft continue to experience minimum availability well below 50 percent.
- In no month did the overall fleet exceed its goal of 60 percent availability. Only the F-35C variant exceeded the 60 percent goal, in 6 of 12 months, with a maximum availability of 71 percent in April 2016. The F-35A and F-35B variants never exceeded 60 percent, but the F-35A
Achieved 59 percent in May 2016 and the F-35B reached a maximum 50 percent in January, April, and July 2016.

- The table below summarizes aircraft availability by operating location for the 12-month period ending October 2016. The first column indicates the average availability achieved for the whole period, while the maximum and minimum columns represent the range of monthly availabilities reported over the period. The number of aircraft assigned at the end of the reporting period is shown as an indicator of potential variance in availability. Sites are arranged in order of when each site began operation of any variant of the F-35, and then arranged by variant for sites operating more than one variant. The Marine Corps terminated F-35B operations at Eglin AFB in February 2015, so there were no F-35Bs at that site for the 12-month period of this report; thus, that entry, previously reported in the FY15 DOT&E Annual Report, has been removed. The Navy operational test squadron at Edwards AFB received its first F-35C in August 2016, the only new operating site to stand up since the FY15 DOT&E Annual Report.

- Trend analysis of monthly fleet availability from August 2012 through October 2016 showed a weak rate of improvement of approximately 5 percent growth per year over this period. This is consistent with the growth rate reported in the DOT&E FY15 Annual Report – but, again, the growth was neither steady nor continuous. The majority of this growth still results from a concentrated increase in availability that occurred during the months of September 2014 through December 2014. Analysis of availability from January 2015 through October 2016, the time period after this concentrated increase, shows a more modest less than 1 percent annual growth rate, which is in better agreement with recent observations.

- The combined fleet of designated, instrumented OT aircraft currently at Edwards AFB, which was built in Lots 3 to 5, averaged 48 percent availability from January to October 2016. Seventeen instrumented OT aircraft were assigned to Edwards AFB as of October 2016. This is well-short of the target of 80 percent that will be needed to conduct an efficient IOT&E, or combat operations.

- Due to concurrent development and production, which resulted in delivering operational aircraft before the program has completed development and finalized the aircraft design, the Services must send the current fleet of F-35 aircraft to depot facilities. This is to receive modifications that have been designed since the aircraft were originally manufactured and are now required for full capability. Some of these modifications are driven by faults in the original design that were not discovered until after production had started, such as major structural components that do not meet the requirements for the intended lifespan, and others are driven by the continuing improvement of the design of combat capabilities that were known to be lacking when the aircraft were first built. These modifications are a result of the concurrency of production and development and cause the program to expend resources to send aircraft for major re-work, often multiple times, to keep up with the aircraft design as it progresses. Since SDD will continue at least to the middle of 2018, and by then the program will have delivered nearly 200 aircraft to the Services in other than the 3F configuration, the depot modification program and its associated concurrency burden will be with the Services for years to come.

- Sending aircraft to depot facilities for several months at a time to bring them up to Block 3i capability from Block 2B (i.e., upgrading avionics processors) and to meet life limit requirements, and eventually to the Block 3F configuration, reduces the number of aircraft at field sites and thus decreases fleet availability. For the 12-month period ending October 2016, the proportion of the fleet in depot status averaged 15 percent, compared to 16 percent for the 12-month period ending October 2015 stated in the DOT&E FY15 Annual Report. The proportion of aircraft in depot status was relatively flat over the majority of this period with little overall trend, ranging between a maximum monthly value of 22 percent and a minimum value of 11 percent. The maximum value of 22 percent occurred in October 2016, and was partly driven by one-time repairs to shedding foam insulation around PAO lines in the fuel tanks for 15 fielded F-35A aircraft. DOT&E expects this rise in the depot rate to be a one-time occurrence, and not indicative of a general trend.

- There is evidence from Program Office reports, however, that later production lot aircraft achieve higher availability rates than earlier lots. For example, for the period from October 2015 to September 2016, accounting for 30 Lot 4 aircraft of all variants, each variant averaged a monthly availability between 43 and 44 percent. For the same time period and accounting for 33 Lot 7 aircraft of all variants, each variant averaged a monthly availability between 64 and 68 percent, which was a statistically significant
increase. However, a significant amount of this increase in availability can be attributed to the newer lot aircraft requiring fewer depot modifications. Over this period the Lot 4 aircraft averaged a monthly depot rate between 19 and 26 percent, depending on variant, whereas the Lot 7 aircraft averaged a monthly depot rate between 0 and 6 percent, considering variant.

- Projections of depot rates beyond 2016 are difficult, since testing and development are ongoing and discoveries continue, including the need for redesigned outer wing structure on the F-35C to accommodate AIM-9X missile carriage. This structural modification was installed on an F-35C developmental test aircraft for testing in late 2016. Also, the program does not yet know the full suite of modifications that will be necessary to bring currently produced aircraft up to the final Block 3F configuration. However, as the program continues to ramp up production rates, the later lot aircraft, which generally require fewer modifications, will comprise a larger proportion of the fleet and may exert a downward influence on the depot percentage rate.

- To examine the suitability performance of fielded aircraft, regardless of how many are in the depot, the program reports on the Mission Capable (MC) and Fully Mission Capable (FMC) rates for the F-35 fleet. The MC rate represents the proportion of the fleet that is not in depot status and that is ready to fly any type of mission (as opposed to all mission types). This rate includes aircraft that are only capable of flying training flights, however, and not necessarily a combat mission. The FMC rate calculates only the proportion of aircraft not in depot status that are capable of flying all assigned missions and can give a better view into the potential combat capability available in the fielded units.

- F-35 aircraft averaged a 62 percent MC rate for the 12-month window ending in October 2016 considering all variants, a slight decrease from the 65 percent reported in the FY15 DOT&E Annual Report. The rate showed little change over time, ranging from a minimum value of 57 percent to a maximum value of 66 percent for the whole fleet, and was relatively consistent across variants as well. The F-35A achieved the highest variant-specific rate at 64 percent, followed by 63 percent for the F-35C, and 59 percent for the F-35B.

- The FMC rate continued to exhibit a steady decline first observed in 2015, and averaged only 29 percent over the period, compared to 46 percent reported in the FY15 DOT&E Annual Report. The rate started at 32 percent in November 2015, which was close to the peak of 33 percent in April 2016, but generally dropped month over month to a minimum value of 21 percent by October 2016. The FMC rate has not been consistent across variants. The F-35A fleet achieved the highest average FMC rate for the period at 37 percent, followed by the F-35C at 24 percent. The F-35B fleet exhibited only a 14 percent average FMC rate, however. Failures in the Distributed Aperture System (DAS), electronic warfare (EW) system, and Electro-Optical Targeting System (EOTS) were the highest drivers pushing aircraft into Partial Mission Capable (PMC) status.

- Analysis of the MC rate of each production lot reveals that later lot aircraft have a greater MC rate than earlier lot aircraft; the difference is less pronounced than the comparison of availability, but still significant. The 30 Lot 4 aircraft averaged between 52 and 61 percent MC over this period by variant, compared to 68 to 73 percent for the Lot 7 aircraft by variant.

- The OT fleet at Edwards AFB averaged an MC rate of 53 percent from January to October 2016.

- The first table below shows F-35 MC and FMC rates for the total fleet and each variant for the 12-month period ending October 2016, including the average, maximum, and minimum monthly values observed. The second table shows F-35 availability and MC rates by production lot and by variant for the 12-month period ending September 2016.
The monthly NMC-M rate averaged 16 percent over the period and was relatively stable, with a minimum value of 14 percent and a maximum value of 20 percent. This rate achieved the program goal of 15 percent, or lower, in 4 of the 12 months of the period. It also shows a slight decreasing (improving) trend over time that indicates with further improvement it may be possible to achieve and sustain program targets within the next calendar year.

- Completing directed modifications or upgrades on still-possessed aircraft in the field also affects the NMC-M rate. In such cases, squadron-level maintainers, instead of the depot or contractor field teams, are tasked to complete Time Compliance Technical Directives (TCTDs). The “time compliance” limits for these directives vary, normally allowing the aircraft to be operated for a certain period of time without the modification. This permits maintenance personnel to do the work at an opportune time, without taking the aircraft off the flight schedule to do so, such as by combining the TCTD with other maintenance activities. While maintainers accomplish these TCTDs, the aircraft are designated as NMC-M status, and not in depot status. Incorporating these TCTDs will drive the NMC-M rate up (worse) until these remaining modifications are completed. Publishing and fielding new TCTDs is expected for a program under development and is needed to see improvement in reliability and maintainability; however, they inherently add to the maintenance burden in the fielded operational units.

- The NMC-S rate averaged 17 percent and showed no significant trend over the period. In no month did the rate achieve the program goal of 10 percent or less, with a minimum value of 14 percent and a maximum value of 20 percent.

- Several factors have contributed to the NMC-S rate underperforming relative to its goal more than either the NMC-M or depot not-available categories. First, the program originally funded spares to a 20 percent NMC-S rate. To determine the quantity and type of spares needed to achieve this, the program used incorrect engineering predictions that overestimated component reliability (fleet data were not available when this modeling was done early in the program). Actual mean time between failures for many components is lower than the forecasted values used in the spares model. Second, contracting for spares has often been late to need to support the first aircraft delivery for several of the initial production lots. Third, the program has been late to stand up organic depot capabilities to repair existing parts that have failed but can be refurbished instead of being replaced with new parts. Such a capability would reduce the strain on suppliers to produce more spare parts. The lack of spares available in the supply system is driving operating units to take good parts from one NMC aircraft and install them in other aircraft down for those parts, bringing the latter back to available status. This process, known as cannibalization, is performed by units when supply cannot provide needed parts in a timely manner. Cannibalization results in a significant increase in maintenance man-hours compared to replacing a bad part with a new or repaired part. For the 12-month period ending in October 2016, the monthly cannibalization rate averaged 9.8 cannibalization actions for every 100 sorties against a program goal of no more than 8 actions for every 100 sorties. The fleet met this goal in only 1 month, performing 6.2 cannibalizations per 100 sorties in December 2015, but analysis over this period does not demonstrate a statistically significant trend in the cannibalization rate.

- Modifying aircraft also has an effect on the NMC-S rate as the Services can cannibalize parts from aircraft in the depots to support field units when replacement parts are not otherwise available from normal supply channels or stocks of spare parts on base. With the large number of aircraft in depot status, the program may have been able to improve the NMC-S rate by using depot cannibalizations, instead of procuring more spare parts, or reducing the failure rate of parts installed in aircraft, or improving how quickly failed parts are repaired and returned to circulation. If the Services endeavor to bring all of the early lot aircraft into the Block 3F configuration, the program will continue to have an extensive modification program for several years. While this will continue to provide opportunities for depot cannibalizations during that time, once the Block 3F modifications are complete, there will be fewer aircraft in the depot serving as spare parts sources and more in the field requiring parts support. If demand for spare parts remains high, this will put pressure on the supply system to keep up with demand without depot cannibalization as a source.

- While the fleet was much closer to achieving the NMC-M goal than the NMC-S goal, these two rates are not necessarily completely independent. Specifically, poor diagnostics or difficult-to-conduct troubleshooting – issues that are maintainability problems at root cause – can drive the NMC-S rate up as well. For example, if troubleshooting efforts initially isolate faults to incorrect parts, units may inadvertently take good parts off the aircraft, return them to the supply system for depot or manufacturer checks, and demand replacement parts, unnecessarily straining the supply system for repair actions that will not resolve the fault. Units will report aircraft in NMC-S status until these replacement parts arrive. Once the unit receives and installs these parts, it would discover that the original problem remains, and return the aircraft to NMC-M status until further troubleshooting hopefully isolates the correct part. Thus, actions to reduce higher-than-targeted NMC-S rates may include improving the accuracy of diagnostics and troubleshooting procedures as well as increasing the availability of spare parts.

- The following table summarizes depot, NMC-M, and NMC-S rates for the total F-35 fleet and each variant for the 12-month period ending October 2016, including the average, maximum, and minimum monthly values observed.
FY16 DOD PROGRAMS

F-35 DEPOT, NMC-M, AND NMC-S RATES BY VARIANT FOR 12-MONTH PERIOD ENDING OCTOBER 2016

<table>
<thead>
<tr>
<th>Variant</th>
<th>Depot (Goal of 15% or less)</th>
<th>NMC-M (Goal of 15% or less)</th>
<th>NMC-S (Goal of 10% or less)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Fleet</td>
<td>15%</td>
<td>22%</td>
<td>11%</td>
</tr>
<tr>
<td>F-35A</td>
<td>14%</td>
<td>27%</td>
<td>8%</td>
</tr>
<tr>
<td>F-35B</td>
<td>20%</td>
<td>25%</td>
<td>14%</td>
</tr>
<tr>
<td>F-35C</td>
<td>6%</td>
<td>15%</td>
<td>2%</td>
</tr>
</tbody>
</table>

- Low availability is preventing the field of fielded operational F-35 aircraft from achieving the originally planned, Service-funded flying hour goals. The original Service beddown plans were based on F-35 squadrons ramping up to a steady state, fixed number of flight hours per tail per month, allowing for the projection of total fleet flight hours.
- Since poor availability in the field has shown that these original plans were unexecutable, the Program Office has since produced modeled-achievable projections of total fleet flight hours, basing these projections on demonstrated fleet reliability and maintainability data, as well as expectations for future improvements. The most current modeled-achievable projection is from March 2016.
- Through November 21, 2016, the fleet had flown approximately 91 percent of the modeled-achievable hours. This is an improvement since November 2015, the date used in the FY15 DOT&E Annual Report, when the fleet had flown 82 percent of modeled-achievable hours; however, recent updates to the model revised the projected hours downward. The completion of actual flight hours against modeled-achievable flight hours was consistent across all three variants, with each variant completing between 90 or 96 percent of its variant-specific projection. By comparison, the fleet had flown only 72 percent of the original beddown plan hours, with wide discrepancy between variants. The F-35A had flown 82 percent of its original beddown plan hours, while the F-35C had flown only 49 percent, for example.
- The following table shows the planned versus achieved flight hours by variant for both the original plans and the modeled-achievable projections for the fielded production aircraft through November 21, 2016.

F-35 Fleet Reliability

- Aircraft reliability assessments include a variety of metrics, each characterizing a unique aspect of overall weapon system reliability.
 - Mean Flight Hours Between Critical Failures (MFHBCF) includes all failures that render the aircraft not safe to fly, and any equipment failures that would prevent the completion of a defined F-35 mission. It includes failures discovered in the air and on the ground.
 - Mean Flight Hours Between Maintenance Event (MFHBR) gives an indication of the degree of necessary logistical support and is frequently used in determining associated costs. It includes any removal of an item from the aircraft for replacement. Not all removals are failures, and some failures can be fixed on the aircraft without a removal. For example, some removed items are later determined to have not failed when tested at the repair site. Other components can be removed due to excessive signs of wear before a failure, such as worn tires.
 - Mean Flight Hours Between Maintenance Event Unscheduled (MFHBMES_U) is a useful reliability metric for evaluating maintenance workload due to unplanned maintenance. Maintenance events are either scheduled (e.g., inspections, planned removals for part life) or unscheduled (e.g., maintenance to remedy failures, troubleshooting false alarms from fault reporting or defects reported but within limits, unplanned servicing, removals for worn parts—such as tires). One can also calculate the mean flight hours between scheduled maintenance events, or total events including both scheduled and unscheduled. However, for this report, all MFHBMES_U metrics refer to the mean flight hours between unscheduled maintenance events only, as it is an indicator of aircraft reliability and the only metric with an ORD requirement for mean flight hours between maintenance event.
 - Mean Flight Hours Between Failures, Design Controllable (MFHBF_DC) includes failures of components due to design flaws under the purview of the contractor, such as the inability to withstand loads encountered in normal operation. Failures induced by improper maintenance practices are not included.

- The F-35 program developed reliability growth projection curves for each variant throughout the development period as a function of accumulated flight hours. These projections were established to compare observed reliability with target numbers to meet the threshold requirement at maturity, defined by 75,000 flight hours for the F-35A and F-35B, and by 50,000 flight hours for the F-35C, for a total 200,000 cumulative fleet flight hours. In November 2013, the program discontinued reporting against these curves for all ORD reliability metrics, and retained only the curve for MFHBF_DC, which is the only reliability metric included in the JSF Contract Specification (JCS). DOT&E reconstructed the growth curves for the other metrics analytically for this report. The following discussion and tables compare the
As of the end of July 2016, the F-35 fleet, including operational and flight test aircraft, had accumulated nearly 60,300 flight hours, or approximately 30 percent of the total 200,000-hour maturity mark defined in the ORD. Unlike the above table, which accounts only for fielded production aircraft, the flight test aircraft are included in the fleet hours which count toward reliability growth and maturity. By variant, the F-35A had flown approximately 32,400 hours, or just over 43 percent of its individual 75,000-hour maturity mark; the F-35B had flown approximately 20,300 hours, or 27 percent of its maturity mark; and the F-35C had flown approximately 7,600 hours, or 15 percent of its maturity mark.

• The program reports reliability and maintainability metrics on a 3-month rolling window basis. This means, for example, the MFHBR rate published for a month accounts only for the removals and flight hours of that month and the two previous months. This rolling 3-month window provides enough time to average out variability often seen in month-to-month reports, while providing a short enough period to distinguish current trends.

• The first table, below, compares the most recently reported and projected interim goal MFHBCF values, with associated flight hours. It shows the ORD threshold requirement at maturity and the values for May 2015, the month used in the FY15 DOT&E Annual Report, for reference as well.

• The three similar tables on the next page compare the most recently reported and projected interim goals for MFHBR, MFHBRME_Unsch, and MFHBF_DC rates for all three variants. MFHBF_DC is contract specification, and its JCS requirement is shown in lieu of an ORD threshold.

• Note that data more current than July 2016 were not available at the time of this report due to the backlog of maintenance events pending JRMET review as a result of the Lockheed Martin database (FRACAS) not being compliant with all applicable DOD information assurance policies mandated by U.S. Cyber Command.

• Reliability values decreased (worsened) for 8 of 12 metrics between the May 2015 and the July 2016 values. All three MFHBCF metrics decreased between May 2015 and July 2016, and usually showed the greatest degree of reduction compared to the other reliability metrics. This aligns with the declining FMC rates for all variants. Of the remaining metrics, F-35A MFHBR and MFHBRME_Unsch, and F-35A and F-35B MFHBF_DC, improved slightly. A more in-depth trend analysis over the 12-month period showed that all three variants exhibited declining MFHBCF; F-35B and F-35C MFHBR and MFHBRME_Unsch were either flat or decreasing slowly; and MFHBF_DC for all variants were also either flat or decreasing. Only F-35A MFHBR and MFHBRME_Unsch increased over this period.

• All nine of the ORD metrics are below interim program goals based on their planned reliability growth curves to meet threshold values by maturity. Furthermore, none of the ORD metrics are within 5 percent of their interim goals. Of the ORD metrics, F-35B MFHBRME, at 86 percent, was the closest to its interim goal, while F-35C MFHBF, at 39 percent, was the farthest. All of the JCS metrics, which are the MFHBF_DC for each variant, are above their growth curve interim values, ranging from 12 percent above for the F-35A to 28 percent above for the F-35B. This pattern indicates that the performance of the contract specification reliability metrics exceeding their interim values is not translating into the ORD reliability metrics showing the same improvement, which are operational requirements that will be evaluated during IOT&E.

• The fact that all the contract specification metrics are above their growth curve does not necessarily imply that the F-35 will deliver desired reliability in the field, especially in light of the fact that all ORD requirements are below their growth curves. The ORD requirements reflect how the aircraft will perform in combat, while the JCS metrics are limited to failures that are definitively the fault of component design. However, several situations can divorce improvement in the JCS metrics to similar improvements in the ORD metrics or availability. For example, components that are easily broken during maintenance, such as nutplates, may not be scored as design-controllable failures, but repairing and replacing these fragile components will adversely affect the ORD reliability metrics. Likewise, when old versions of redesigned components fail in the field, depending on circumstances, these failures may not be reported in the reliability metrics, but the effect on downing the aircraft will always be reflected in the availability metrics.

• The effect of lower (poorer) MFHBCF values is reduced aircraft fully mission capable, mission capable, and

<table>
<thead>
<tr>
<th>Variant</th>
<th>ORD Threshold</th>
<th>Values as of July 31, 2016</th>
<th>Values as of May 2015*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flight Hours</td>
<td>MFHBCF</td>
<td>Cumulative Flight Hours</td>
</tr>
<tr>
<td>F-35A</td>
<td>75,000</td>
<td>20</td>
<td>32,358</td>
</tr>
<tr>
<td>F-35B</td>
<td>75,000</td>
<td>12</td>
<td>20,256</td>
</tr>
<tr>
<td>F-35C</td>
<td>50,000</td>
<td>14</td>
<td>7,648</td>
</tr>
</tbody>
</table>

*The JPO revised past R&M metrics based on applying the current JRMET scoring rules to past data. As a result, values reported for May 2015 in this report may be different than the values for the same month in the FY15 DOT&E Annual Report. See the Reliability Growth section below for more details.
availability rates. MFHBR values lagging behind planned growth targets drive a higher demand for spare parts from the supply system than originally envisioned. When MFHBME_Unsch values are below expectation, there is a higher demand for maintenance manpower than anticipated.

Reliability Growth

- In the fall of 2016, the Program Office revised reliability and maintainability (R&M) metrics that had been previously reported by applying new or updated JRMET scoring rules that had been created or modified at different times over the course of system development, and agreed to by the JRMET members, to historical maintenance event data. Scoring rules determine such criteria as when a maintenance event is considered relevant and should be included in R&M metrics, when an event is not relevant and will not be included in metrics, such as failures in test-specific instrumentation that will not be installed in operational aircraft, and when an event is chargeable to the design-controllable metric as being the fault of the design as opposed to induced by improper maintenance. There are many detailed scoring rules to ensure similar maintenance situations are scored consistently. As the JRMET developed new scoring rules and changed some existing ones, the program realized that previously reported metrics needed to be revised – scored by the new rule set – in order to ensure current R&M metrics could be compared more accurately with past R&M performance. The effects on each reliability metric of this revision were mixed, with 7 of 12 of the May 2015 metrics being revised downward (worsening), and the remaining 5 increasing compared to their originally reported values; however, 4 of these improved metrics decreased, or worsened, by July 2016. Note the values in the tables above reflect the JPO revised past R&M metrics based on applying the current JRMET scoring rules to past data. As a result, values reported for May 2015 in this report may be different than the values for the same month in the FY15 DOT&E Annual Report.

- In the two prior Annual Reports, DOT&E reported the results of reliability growth analysis based on the Duane Postulate, using R&M data provided by the Program Office, to determine the rate of growth for MFHBR and MFHBME_Unsch. In 2016, DOT&E conducted an updated analysis of reliability growth using the more refined U.S. Army Materiel Systems Analysis Activity (AMSAA)-Crow model, examining data from the start of the program to July 2016. The AMSAA-Crow model characterizes growth by a single growth parameter, using a method that is similar to the Duane Postulate. A growth rate between zero and one implies improvement in reliability, a growth rate of zero
implies no growth, and a growth rate less than zero implies reliability decay. Since it is logarithmic, a growth rate of 0.40 represents much faster than twice the growth of a rate of 0.20.

- Unlike the Duane Postulate, the AMSAA-Crow model enables the determination of statistical confidence intervals on its estimated growth rate based on the underlying mathematics in the model. Further, the expected growth rate is determined by Maximum Likelihood Estimator (MLE) methods, rather than linear regression as in the Duane Postulate, allowing for the quantity of data to have an effect on the growth parameter estimate.

- Previous DOT&E Annual Report reliability growth analyses included only the F-35A and F-35B variants, and only for the MFHBR and MFHBME metrics, due to a small amount of hours on the F-35C, and fewer critical failures than removals and unscheduled maintenance events. For this year’s updated analysis, sufficient data for the MFHBCF metric and the F-35C variant were available for these metrics and estimates to be included.

- The first table below shows the most likely growth rate and 95 percent upper and lower confidence bound growth rates, providing a range of likely values for the actual growth rate, for all three variants and all three ORD reliability metrics. It also includes the projected values of these three metrics for each variant based on the most likely, upper, and lower bound growth rates at maturity; i.e., 75,000 flight hours for the F-35A and F-35B and 50,000 flight hours for the F-35C.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Variant</th>
<th>July 2016 Growth Rates</th>
<th>Projections at Maturity</th>
<th>ORD Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Most Likely</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>MFHBCF</td>
<td>F-35A</td>
<td>0.137</td>
<td>0.109</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>F-35B</td>
<td>-0.051</td>
<td>-0.089</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>F-35C</td>
<td>-0.107</td>
<td>-0.180</td>
<td>-0.039</td>
</tr>
<tr>
<td>MFHBR</td>
<td>F-35A</td>
<td>0.192</td>
<td>0.173</td>
<td>0.211</td>
</tr>
<tr>
<td></td>
<td>F-35B</td>
<td>0.126</td>
<td>0.103</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>F-35C</td>
<td>-0.068</td>
<td>-0.119</td>
<td>-0.020</td>
</tr>
<tr>
<td>MFHBM_EUnsch</td>
<td>F-35A</td>
<td>0.170</td>
<td>0.161</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>F-35B</td>
<td>0.359</td>
<td>0.351</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>F-35C</td>
<td>0.189</td>
<td>0.174</td>
<td>0.205</td>
</tr>
</tbody>
</table>

* No estimates for projections at maturity were made for metrics with negative growth rates.

- The growth rates listed in the first table were calculated with approximately 32,400 hours for the F-35A, 20,300 hours for the F-35B, and 7,600 hours for the F-35C. For comparison, historically observed MFHBM_EUnsch growth rates for several currently fielded aircraft are shown in the second table. Analogous rates for MFHBR and MFHBCF are not available.

- The updated reliability growth analysis through July 2016, using the AMSAA-Crow model, accounts for the recent tapering off of reliability growth better than the Duane Postulate. As a result, most of the growth rates in the table above are lower than those reported in prior DOT&E Annual Reports. For the nine ORD metrics, the current growth analysis predicts that only one will meet or surpass the ORD threshold value at maturity, F-35B MFHBM_EUnsch. As the analysis showed no growth for F-35B and F-35C MFHBCF, and F-35C MFHBR, no projections out to maturity were made for those metrics and current estimates do not meet threshold requirements.

- Comparing the currently exhibited MFHBM_EUnsch growth rates to historical aircraft shows that from program initiation to July 2016, F-35 reliability has improved faster than average for all variants. However, F-35 reliability remains below program interim goals for its current stage of development in all cases, and is not projected to achieve threshold values by maturity in most cases, due to very low initial reliability at the start of the program, well below the assumed initial reliability values that informed program interim goals.

- Although there were approximately 7,600 hours on the F-35C fleet for this year’s analysis, usually enough time to establish a growth trend, the lack of evidential growth in the MFHBCF and MFHBR metrics may be explained by the fact that the F-35C fleet has only recently begun to send aircraft to the depot for modifications. Also, the F-35C fleet has the least hardware improvements incorporated relative to the F-35A and F-35B fleets. The relatively strong growth in the MFHBM_EUnsch metric, by contrast, can be partly explained for all variants by a reduction in false alarms from the aircraft Prognostics and Health Management (PHM) system, driving fewer overall unscheduled maintenance actions, in addition to the natural learning curve process.

- Based on current reliability trends, projections to maturity may not be appropriate. Reliability growth projection methodologies often assume that a system is in a single phase of testing, characterized by a nearly constant operating mode and environment, and gets reliability improvements incorporated while the system is under test. For most of the F-35 program, these conditions have held sufficiently true such that reliability growth displayed consistent behavior; however, with the release of Block 2B capabilities, including increased flight envelope, beginning in 2015, both the operating mode and environment apparently changed enough to constitute a new phase for the purpose of analyzing reliability growth. Programs with multiple phases
of development, where each phase is defined by different environments or operational usage, normally generate separate reliability planning curves (used to determine interim goals during that phase) and separate reliability growth tracking curves for each phase, as a single curve is not sufficient to mathematically represent reliability growth behavior across multiple phases. Because the reliability projections are based on data that span the periods of time, both before and after the Block 2B fleet release, they may not best capture reliability trends.

- For programs with multiple phases, it is common for reliability to decrease or level off at the start of a new phase when the system is subjected to a more stressing operating mode or environment that exposes new failure modes. As a result, reliability growth can come to a halt or even decline; however, after a while, growth may resume as the program starts to implement reliability improvements for these new failure modes.

- Reliability growth may resume as a result of ongoing program reliability improvement initiatives, continuing to send aircraft through the depot modifications program, replacing lower reliability components with higher reliability versions via TCTDs, and other reliability initiatives. However, DOT&E also expects that the Block 3F envelope and capabilities release, incrementally released between CY17 and CY18, will reveal new failure modes (e.g., new weapons, higher airspeeds and g with Block 3F envelope) that will limit the overall effect of these reliability improvement initiatives.

- Despite the difficulty projecting accurate reliability values at maturity, given the phased introduction of F-35 block capabilities, DOT&E does not expect any variant to achieve interim threshold goals for MFHBCF by the start of IOT&E, considering the recent decline in this metric over the past year. In fact, indications are that for each variant, this metric is the furthest from its current interim goal.

- Failing to grow reliability sufficiently by the start of IOT&E will make achieving the necessary 80 percent availability to accomplish all mission trials within the planned time span very difficult. Further, a failure to achieve adequate MFHBCF reliability in particular will impede the ability of the Operational Test Squadrons (OTS) to generate multiple four-ship formations with all required mission systems functional, a necessary condition for a set of the planned mission trials.

- A number of components have demonstrated reliability much lower than predicted by engineering analysis. This drives down the overall system reliability and can lead to long wait times for resupply as the field demands more spare parts than the program planned to provide. Aircraft availability is also negatively affected by longer-than-predicted component repair times. The table at top right shows some of the high-driver components affecting low availability and reliability, grouped by components common to all variants, followed by components failing more frequently on a particular variant or which are completely unique to it.

- The composition of the list of some of the high-driver components has changed as the program has progressed and either fielded more reliable components, or new failures have occurred to displace previous high drivers. For example, compared to the list reported in previous DOT&E Annual Reports, the 270V DC battery and associated components, the F-35B Upper Lift Fan Door Actuator, and the exhaust nozzle assembly components used on the F-35A and F-35C, are no longer high drivers. Improving aircraft availability can be realized by more than just improving the reliability of components and restocking supply with improved, redesigned parts; updating JTD and improving repair procedures can contribute to increased aircraft availability as well. However, in the current reporting period, overall reliability has not increased and new components have become high drivers, such as the Electronic Warfare Receiver and the Vertical Tail Bulb Seal. Note also that the program released Block 2B capabilities and flight envelope to the fleet in the period of this report. As the flight envelope is expanding and the fleet uses more mission system capabilities, new failure modes will likely emerge to dampen the overall effect of individual reliability improvements, consistent with recent trends observed in reliability growth analysis.

Maintainability

- The amount of time needed to repair aircraft and return them to flying status remains higher than the requirement for the system when mature, but has improved over the past year. The program assesses this time with several measures, including Mean Corrective Maintenance Time for Critical Failures (MCMTCF) and Mean Time To Repair (MTTR) for all unscheduled maintenance. MCMTCF measures active maintenance time to correct only the subset of failures that prevent the F-35 from being able to perform a specific mission; it indicates how long it takes, on average, for maintainers to return an aircraft from NMC to Mission Capable (MC) status. MTTR measures the average active maintenance time for all unscheduled maintenance actions; it is a general indicator of the ease and timeliness of repair.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Common to All Variants</th>
<th>Additional High Drivers by Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-35A</td>
<td>Avionics Processors</td>
<td>Horizontal Tail Actuation</td>
</tr>
<tr>
<td></td>
<td>Low Observable</td>
<td>Vertical Tail Bulb Seal</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>Electronic Warfare Receiver</td>
</tr>
<tr>
<td>F-35B</td>
<td>Shock Struts</td>
<td>Fuel System Components and Mods</td>
</tr>
<tr>
<td></td>
<td>Cold Air Duct</td>
<td>Flexible Linear Shaped Charge</td>
</tr>
<tr>
<td>F-35C</td>
<td>Main Landing Gear Tires</td>
<td>Main Landing Gear Retract Actuator*</td>
</tr>
<tr>
<td></td>
<td>Nutplates</td>
<td>Nose Landing Gear Steering Motor</td>
</tr>
<tr>
<td></td>
<td>On-Board Oxygen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generating System</td>
<td></td>
</tr>
</tbody>
</table>

* Unique to the F-35C IPP – Integrated Power Package
Both measures include active touch labor time and cure times for coatings, sealants, paints, etc., but do not include logistics delay times, such as how long it takes to receive shipment of a replacement part.

- The tables below compare measured MCMTCF and MTTR values for the 3-month period ending in July 2016 to the ORD threshold and the percentage of the value to the threshold for all three variants. The tables also show the value from May 2015, the month reported in the FY15 DOT&E Annual Report, for reference. [Note that the May 2015 values may be different than those in the FY15 DOT&E Annual Report due to the revision of the scoring rules described at the beginning of the Reliability Growth section above.] For maintainability, lower repair times are better. Three of six metrics improved marginally, while three metrics, F-35B and F-35C MCMTCF, and F-35A MTTR, increased or worsened. Currently, all mean repair times are at least or nearly twice as long as their ORD threshold values for maturity, reflecting a heavy maintenance burden currently being carried by fielded units.

F-35 MAINTAINABILITY: MCMTCF (HOURS)

<table>
<thead>
<tr>
<th>Variant</th>
<th>ORD Threshold</th>
<th>Values as of July 31, 2016 (3 Mos. Rolling Window)</th>
<th>Observed Value as Percent of Threshold</th>
<th>Values as of May 2015 (3 Mos. Rolling Window)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-35A</td>
<td>4.0</td>
<td>10.6</td>
<td>265%</td>
<td>11.4</td>
</tr>
<tr>
<td>F-35B</td>
<td>4.5</td>
<td>13.2</td>
<td>293%</td>
<td>12.7</td>
</tr>
<tr>
<td>F-35C</td>
<td>4.0</td>
<td>10.1</td>
<td>253%</td>
<td>8.4</td>
</tr>
</tbody>
</table>

F-35 MAINTAINABILITY: MTTR (HOURS)

<table>
<thead>
<tr>
<th>Variant</th>
<th>ORD Threshold</th>
<th>Values as of July 31, 2016 (3 Mos. Rolling Window)</th>
<th>Observed Value as Percent of Threshold</th>
<th>Values as of May 2015 (3 Mos. Rolling Window)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-35A</td>
<td>2.5</td>
<td>6.3</td>
<td>252%</td>
<td>4.7</td>
</tr>
<tr>
<td>F-35B</td>
<td>3.0</td>
<td>7.3</td>
<td>243%</td>
<td>7.7</td>
</tr>
<tr>
<td>F-35C</td>
<td>2.5</td>
<td>4.9</td>
<td>196%</td>
<td>5.3</td>
</tr>
</tbody>
</table>

- A more in-depth analysis of data from between August 2015 and July 2016, in order to capture longer-term 1-year trends, shows that for the MCMTCF metric, the F-35A and F-35B repair times are decreasing, while for the F-35C it is relatively flat. For overall mean repair times, however, the F-35A exhibited a slight increasing, or worsening trend; the F-35B showed a slight decreasing, or improving trend; and the F-35C was relatively stable. Prior to May 2015, all six metrics were improving. In contrast, the more recent trend from this period generally indicates a slowing of improvement in the maintainability metrics.

- All six maintainability metrics exhibit high month-to-month variability. Due to this variability, it is difficult to make projections in trends for maintenance metrics; however, it will be challenging for the program to meet the threshold values by maturity with the rate of improvement slowing and when current values for repair times are at least twice as high as requirements.

- Several factors negatively influenced the ability to conduct quick and efficient maintenance. Extensive adhesive cure times for structural repairs, such as attaching hardware (e.g., nutplates and installing heat blankets around the engine bay), as well as long material cure times for low observable (LO) repairs, remain drivers. The cure time for some LO materials can be as high as 168 hours, for example, although units can accelerate this if they have appropriate tools.

- Other factors that indirectly affect maintainability metrics have also been raised as concerns by maintainers. Maintainers must physically connect Portable Maintenance Aid (PMA) laptops to the aircraft in order to conduct most maintenance activities. The PMAs enable the maintainers to get status and configuration information from the aircraft, as well as control aircraft functions to enable other maintenance, such as opening the bomb bay doors where the cooling-air receptacle is located in order to apply air conditioning while running avionics on the ground. Maintainers also access the Anomaly Fault Resolution System (AFRS), which automatically troubleshoots Health Reporting Codes (HRCs) generated by the on-aircraft PHM system, and access JTD, which tells maintainers how to effect repairs identified by AFRS, via the PMA. Finally, maintainers record their work with the PMAs as well. However, synching the PMAs to the aircraft to conduct maintenance has been difficult, time-consuming and, in many instances, maintainers must attempt to synch several PMAs with an aircraft before finding one that will successfully connect. These connections are called Maintainer Vehicle Interface (MVI) sessions. Occasionally PMAs disconnect in the middle of an MVI session, which also hampers efficient maintenance. Recently, the program introduced improved MVI cable adapters to prevent accidental physical disconnection, which has helped. Software-related problems persist as well, such as PMAs taking anywhere from seconds to minutes to connect. This occasionally leads maintainers to disconnect a PMA they incorrectly believe is failing to connect, which prevents that PMA from connecting to an aircraft until an Automatic Logistics Information System (ALIS) administrator resets it, which can be a lengthy process.

- Maintainers have reported several difficulties with troubleshooting the aircraft, which is the first step in many maintenance actions. Normally, the aircraft PHM system produces HRCs and then maintainers use AFRS to identify possible root causes for those HRCs as well as determine the appropriate repair action. Often, AFRS will provide a “solution set,” which lists several possible root causes for an HRC, rank ordered by probability of occurrence. While AFRS coverage is improving, it currently provides effective solution sets only approximately 70 percent of the time.
Particularly, when an aircraft fails a Vehicle Systems (VS) Built-In Test (BIT), an aircraft self-check conducted pre- and post-flight, there is no specific HRC produced, making these relatively frequent occurrences difficult to troubleshoot. When there is no HRC, such as in a VS BIT failure or manually reported fault, or AFRS does not produce a solution set for an HRC, or all the solutions offered by AFRS fail to resolve a fault, units must use other resources to troubleshoot the discrepancy. The primary method is to submit Action Requests (AR) to the joint JPO-Lockheed Martin Lightning Support Team (LST), whose engineers will further troubleshoot the aircraft remotely. The AR response times vary significantly, depending on category and urgency, but average several days to get a final response. Alternatively, or in conjunction, maintainers can use experience to troubleshoot on their own; however, in most cases they lack any system theory-of-operation or troubleshooting manuals that tell them how aircraft systems work. The current JTD are primarily dedicated to instructions only for repair actions for which AFRS has already identified a solution, and not for teaching maintainers the details of systems operations. Recently, the program and Lockheed Martin have started to provide some troubleshooting manuals to field maintainers for select mission systems to try to improve the poor fleet FMC performance. The extent to which these manuals will help troubleshooting and result in higher FMC rates remains to be determined.

- F-35 flying squadrons also have a heavy burden of scheduled maintenance. In particular, maintenance units have reported that daily servicing and inspection tasks, known as the Before-Operations Servicing (BOS), Inter-Operations Servicing (IOS), and Post-Operations Servicing (POS), are very time-consuming compared to similar inspections on legacy aircraft. Some of these daily inspections also require power and cooling air application on the aircraft, so a unit’s ability to perform them is a function of the amount of Support Equipment (SE) assigned or available when needed. As the fleet matures and more data become available, the Services may be able to increase intervals between certain scheduled inspection tasks to reduce the man-hours that units must dedicate to this type of maintenance, if field experience warrants this. However, it is not clear the scheduled maintenance burden will reduce in the near future.

Autonomic Logistics Information System (ALIS)

- The program continues to fall behind in ALIS development and fielding. Although the program planned to test and field the next iteration of capability, designated ALIS 2.0.2, in 2016 to support the Air Force’s decision to declare Initial Operational Capability (IOC) in August, the program failed to do so. Additionally, the program continued to defer planned content from ALIS 3.0 to post-SDD development.

- ALIS includes hardware and software that connects with all aspects of F-35 operations, including maintenance management, aircraft health, supply chain management, Offboard Mission Support (OMS) mission planning, along with tracking and management of pilot and maintainer training. Units rely on ALIS for planning and executing deployments by managing the data required to transfer aircraft, materiel, and personnel from home station to a deployed or expeditionary environment. Similar to the manner in which the program develops and fields mission systems capability in the air vehicle, it fields ALIS in increments.

 - The program fielded ALIS software version 2.0.1.1 in late 2015. Since that time, the program has released two updates, 2.0.1.2 and 2.0.1.3, to address previously identified, usability-related deficiencies. These software updates include fixes to existing deficiencies and usability problems, but do not add new capabilities to ALIS. Prior to the release of the first update with ALIS 2.0.1.2, the program attempted to field ALIS software versions with both new capabilities and deficiency corrections, a process which tended to add new problems while fixing some existing problems. Instead, the program now plans to continue fielding updates dedicated only to correcting deficiencies every three months until the release of ALIS 3.0, the final release scheduled for SDD.

 - Although the program had planned to field a new version of ALIS software, version 2.0.2, in the second half of 2016, in time to support the U.S. Air Force IOC declaration, it was unable to do so. ALIS 2.0.2 includes propulsion integration, a key capability the Air Force had planned to have for IOC; however, the Air Force declared IOC with ALIS 2.0.1 in August, forgoing those capabilities. Because the program continued to experience technical difficulties integrating propulsion functionality into ALIS, fielding of 2.0.2 slipped into CY17. As a result, operational units began 2016 with ALIS 2.0.1.1 and will finish the year with ALIS 2.0.1.3; receiving only updates to address deficiencies and without any additional capability fielded in ALIS.

 - Delays in ALIS 2.0.2 have affected the development of the next, and last, major release of ALIS software within SDD, ALIS 3.0, because Lockheed Martin shifted personnel from ALIS 3.0 development to support completing ALIS 2.0.2 development. Because the program can no longer complete ALIS 3.0 with all of the additional capability development planned by the end of SDD, it has restructured the planned ALIS increments for the remainder of SDD and for Follow-on Modernization (FoM). This restructuring reduces the content of ALIS 3.0 from earlier plans, defers content from ALIS 3.0 that the program has now determined is not required for IOT&E to post-SDD development, and also adds Service and partner priorities and emerging requirements for security updates. The resulting plan from the restructuring was to field four increments of software at 6-month intervals; the first, ALIS 3.0, scheduled to field in mid-to-late 2018, which is required for IOT&E, followed by the remaining three after SDD. These incremental software releases are also intended to resolve ALIS deficiencies and usability.
problems. At the mid-point between each of these major releases, the program plans to deliver software updates to continue addressing usability problems and deficiencies. Because no fielding or Logistics Test and Evaluation (LT&E) events of additional ALIS capability have occurred for over a year, the program’s plan to develop, test, and field these ALIS 3.0 and later versions appears overly ambitious with a low likelihood of actually being realized. Regardless of whether ALIS 3.0 or a later version has been fielded, or which capabilities are included, IOT&E will evaluate the suitability of the F-35 and ALIS in operationally realistic conditions.

- Until 2016, formal testing of ALIS software only took place at the Edwards AFB, California, flight test center on non-operationally representative ALIS hardware, which relied on reach-back capability to the Lockheed Martin facilities at Fort Worth, Texas. Although some formal testing will continue to occur in this manner, the program developed and fielded a dedicated end-to-end developmental testing venue for ALIS located in part at Edwards AFB and in part at Lockheed Martin in Fort Worth in 2016. This venue, referred to as the Operationally Representative Environment (ORE), reflects the end-to-end Autonomic Logistics infrastructure used to support fielded operations, including one Autonomic Logistics Operating Unit (ALOU), which represents the main hub at Lockheed Martin Fort Worth, two Central Points of Entry (CPEs), representing the country-unique portal from the main hub, and two Standard Operating Units (SOUs), representing squadron-level ALIS components, all networked together in a closed environment. Although the ORE provides for more realistic developmental testing of ALIS hardware and software for early problem discovery and fixing deficiencies, the current closed environment does not adequately represent the variety of ways in which the Services operate ALIS in different environments. ALIS testing at the flight test center is limited in several ways. First, the inability of ALIS to support their engines and lift fans, which differ from production models, so LT&E of propulsion functionality in ALIS cannot take place there. Also, the flight test center does not use ALIS capabilities routinely, such as Squadron Health Management (SHM), AFRS, or the Computerized Maintenance Management System (CMMS), as operational units do. Finally, the flight test center does not use PHM capabilities, as they are used by operational units, since the flight test aircraft have additional sensors and onboard instrumentation that provide the flight test center with more information than is available through PHM.

ALIS Software Testing and Fielding in 2016

- Although the program planned to test and field new capability with ALIS 2.0.2 software release in 2016, it failed to do so. The plans for added capability in ALIS 2.0.2 include:
 - Life Limited Parts Management (LLPM), which includes:
 - Propulsion integration. Currently propulsion data are downloaded from aircraft portable memory devices and provided to Pratt & Whitney Field Service Engineers for processing and generation of maintenance work orders. Propulsion integration will allow ALIS to process propulsion data in the same manner as aircraft data.
 - Production Aircraft Inspection Requirements (PAIRs). ALIS 2.0.2 will include the first phase of the PAIRs system. The program added PAIRs as part of the PHM after eliminating most of the originally planned prognostic algorithms. The program plans to include 8 prognostic algorithms in ALIS 2.0.2 and 8 in ALIS 3.0 out of the originally planned 128 SDD algorithms.
 - Sub-squadron reporting. This will allow the air vehicle to report its status back to the home squadron SOU even when it is deployed away from the majority of a squadron’s assets.
 - SOU-to-SOU communication. Currently, information on one U.S. SOU is transferred to another by routing files from the originating SOU through the CPE at Eglin AFB, Florida, to the ALOU at Fort Worth, Texas, back through the CPE and to the receiving SOU. This new capability will permit targeted routing of files between SOUs under specific circumstances and is geared primarily toward making aircraft deployments more efficient.
 - Deployability improvements. This includes improved deployment planning and the bulk transfer of all deploying assets at once. The current release of ALIS makes deployment planning inefficient as it does not provide a centralized location in ALIS for this function. During deployments, squadrons currently transfer aircraft, supply, and support equipment data files individually.
 - Commercial Off-the-Shelf (COTS) hardware replacement. This allows the program to plan for hardware obsolescence and substitute newer hardware over time.
 - ALIS Readiness Check. Improves the health monitoring of ALIS processes.

- Testing of ALIS 2.0.2 will occur in multiple stages at multiple venues. The program plans to conduct an LT&E on the air vehicle portion of the ALIS 2.0.2 software package in early 2017, including initial testing of the propulsion module of the software in the ORE. Once those tests are complete, the program plans to do a validation and verification of the process to upgrade to ALIS 2.0.2, including the data migration, at an operational unit – possibly Luke AFB, Arizona – before fielding ALIS across the rest of the F-35 operating locations.

- Releasing ALIS 2.0.2 to field units will require significant manual intervention and data verification efforts to transition each site, which will likely affect flight operations. The data migration effort for ALIS 2.0.2 will be more complex and will take longer than previous ALIS releases because of propulsion integration and changes in data structures. For example, the Program Office noted that one ALIS domain alone, Customer Relationship Management, will require 40 man-hours for data migration and verification. Currently, the program estimates that each site will require 8 days
to complete the transition of all assets. Lockheed Martin will conduct the migration and plans to complete the transition at each site by using the Friday through Monday time period of two consecutive weeks. Whether or not the affected squadron can continue flying operations between the two transition periods is unknown. As of September 2016, the program must transition 56 sites—either SOUs or CPEs—through this process. As of the time of this report, the program had not released a comprehensive transition plan.

Assessment of ALIS Support to Deployment Demonstrations with Operational Units

- Because of delays in ALIS release 2.0.2, fielded units have operated with ALIS 2.0.1 since October 2015. As planned, the Marine Corps used this release for a deployment demonstration to the Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms, California, in December 2015, which DOT&E reported on in the FY15 DOT&E Annual Report. Similarly, the Air Force conducted a deployment demonstration to Mountain Home AFB, Idaho, in February 2016. The operational test squadrons from Edwards AFB participated in each of these demonstrations; however, the ALIS hardware came from operational units (a Marine Corps squadron from MCAS Yuma for the MCAGCC demonstration and an Air Force squadron from Hill AFB, Utah, for the Mountain Home demonstration).

- The Air Force completed its first F-35A deployment away from Edwards AFB, California, with six aircraft from the 31st Test and Evaluation Squadron (31TES) to Mountain Home AFB, which has no organic F-35 capability, from February 8 to March 2, 2016. All aircraft that participated in the deployment were in Block 2B configuration with software version 2BR5.2. This deployment was a Service-led assessment.

- This deployment was the first time the Air Force deployed with a modularized, more transportable version of the ALIS hardware, referred to as SOU v2. ALIS software version 2.0.1 was used for this deployment, as well as for the Marine Corps’ deployment to Twentynine Palms; the previous “cross ramp” deployment at Edwards AFB in May 2015 used the bulky SOU v1. Deployed personnel had no difficulty setting up and configuring the ALIS network at Mountain Home AFB; however, they had a great deal of difficulty using ALIS on the local base network. After several days of troubleshooting, Information Technology (IT) personnel and ALIS administrators determined that they had to change several settings on the base network at Mountain Home and in the web interface application (i.e., Internet Explorer) to permit users to log on to ALIS. One of these changes involved lowering the security setting on the base network, an action that may not be compatible with required cybersecurity and network protection standards in place.

- Data file transfers took place more quickly than in the previous F-35 deployment demonstrations, (i.e., the F-35A cross ramp deployment and the Marine Corps’ deployment demonstration to MCAGCC Twentynine Palms). However, Lockheed Martin provided the five ALIS administrators normally assigned to the 31TES and three additional, highly experienced ALIS administrators from other locations to provide deployment support, more than for any previous deployment. Whether the Service’s concept of operations for deploying ALIS will call for this level of ALIS administrative support, to ensure timely and accurate transfer of aircraft data at the deployed location, is still not known. Although the process was time-consuming and labor-intensive, they completed the transfer of all data to the deployed SOU v2 before deployed flight operations were scheduled to begin. To account for the expected extended time for data transfers, the 31TES allocated the ferry date and two additional days to complete the transfers; flight operations began on the third day of the deployment, as planned. Service deployment concepts of operations may need to account for time to transfer aircraft data files and ensure accuracy before beginning – or at least sustaining – operations at deployed locations.

- Because of ambiguity in the ordnance loading technical data, one aircraft experienced major damage to a weapons bay door and horizontal tail early in the deployment when a bomb, which was incorrectly loaded, struck the aircraft following release. Aircraft repairs were extensive enough to require most of the remainder of the deployment to complete. The Marine Corps had previously discovered this ambiguity in the technical data, but the program did not disseminate this information across the F-35 enterprise.

- Preparations to redeploy back to Edwards AFB began on March 1, 2016, with aircraft departing on March 2 and aircraft data file transfer from the deployed SOU beginning as soon as the aircraft took off from Mountain Home AFB. Though ALIS administrators transferred all data off the deployed SOU at Mountain Home AFB, administrators at Edwards AFB did not finish inducting aircraft files back onto the Edwards AFB SOU until March 4. The redeployed aircraft were ready for flight at Edwards on March 5, a 4-day transition period.

- Since the Services have not yet completed ALIS Concept of Operations (CONOPs) development, they will likely need to take into account the results of these deployments when determining the procedures and timing of F-35 deployments. Although the aircraft may be flown for short periods of time without ALIS, operational planners may need to allow for additional time between aircraft deployment and the beginning of deployed flight operations, compared to legacy
platforms. Deployed operations, including the set-up and support from ALIS, will be evaluated during IOT&E.

- The challenges facing the Services and program in making ALIS deployable now involves software. Previously, the program identified the need to move from the bulkier, heavy SOU version 1 (v1) racks, which weighed approximately 1,600 pounds each, to the more customizable, modularized, two-man portable components in the SOU v2, so that the ALIS “footprint” could meet F-35 deployability requirements. Although the SOU v2 has improved the deployability of the ALIS hardware, these recent deployments show that lack of flexibility exhibited in integrating ALIS into new or existing networks, along with deficiencies in ALIS functionality and usability, contribute more to deployability problems than just the previously-identified hardware limitations.

ALIS Software and Hardware Development Planning from 2016 through the End of SDD

- In CY16, the program continued to struggle with providing the planned increments of capability to support the scheduled releases of ALIS software 2.0.2 to such an extent that the program now cannot accomplish the original plan for ALIS 3.0 development. As the objective date for Air Force IOC neared, the program considered releasing ALIS 2.0.2 in two increments: the first with all capabilities aside from propulsion integration in time to support an August 2016 Air Force IOC declaration; the second with propulsion integration, when the program overcame technical problems and completed formal testing. When the Air Force declared IOC without ALIS 2.0.2, using the already-fielded version of ALIS 2.0.1.3 instead, the need for a two-phase release no longer existed. As a result, the program now plans to conduct the LT&E of ALIS 2.0.2 in two parts in early 2017; the first with all functionality except propulsion integration at the flight test center, then propulsion integration in the ORE. ALIS 2.0.2 has been delayed for over a year from the release schedule approved in CY15.

- The Program Office planned for the release of ALIS 3.0 in June 2017, in time to support its planned start date for IOT&E, but now plans to release it in mid-to-late 2018. However, the ongoing delays with ALIS 2.0.2 and the resulting restructuring of ALIS 3.0 and beyond, have caused the program to defer capability that had been planned to be delivered with ALIS 3.0. The following list includes major capabilities the program planned for ALIS 3.0 inclusion, and identifies which ones are now being deferred – in full or in part – out of SDD:
 - Decentralized maintenance. This will enable execution of the sortie generation cycle with a deployable PMA for independent maintenance workflow while maintainers work in the shadow of the aircraft. Decentralized maintenance is now divided into two parts, both deferred to post-SDD software versions.
 - Resource sharing. This capability will allow the sharing of tools, support equipment, pilots, and training records across squadrons without requiring the transfer of data between SOUs. Deferred to post-SDD software release.
 - Security enhancements. This includes additional ALIS readiness checks to validate and monitor user accounts and additional penetration testing.
 - Offboard Prognostic Health Management (PHM). Additional algorithms to assess material condition independently of ALIS releases and to implement a correlation function between the Integrated Caution, Advisory and Warning (ICAW) system and HRCs. Partially deferred to post-SDD software release; only 16 of 128 planned prognostic algorithms are now included within SDD.
 - Life Limited Parts Management (phase 2). Adds an Identify Locate (IDLO) viewer for product life-cycle management, support for lightning protection and On-Board Inert Gas Generation System (OBIGGS), Illustrated Parts Breakdown product, Complex PAIRs to manage remaining life of aircraft components, support for quick engine changes, the HMDS, and back-shop visibility for supply chain management. Full Life Limited Parts Management in ALIS was a capability the program originally planned for ALIS 2.0.0 to support Marine Corps IOC; however, the re-baselining of this technically difficult-to-implement capability has resulted in it not being fielded for at least 2 years after IOC declaration.
 - COTS hardware replacement.
 - Corrosion Management System. Will improve the ability of ALIS to track and report the corrosion conditions of aircraft using two sensors located in designated positions within the aircraft and includes corrosion HRCs in ALIS. Deferred to post-SDD software release.
 - Low Observable Health Assessment System (LOHAS) enhancements. Partially deferred to post-SDD release.

Prognostic Health Management (PHM) within ALIS

- The PHM system is designed to collect performance data to determine the operational status of the air vehicle and, upon reaching maturity, will use data collected across the F-35 enterprise and stored within PHM to predict maintenance requirements based on trends. The PHM system is designed to provide the capability to diagnose and isolate failures, track and trend the health and life of components, and enable autonomic logistics using air vehicle HRCs collected during flight and saved on aircraft PMDs. The F-35 PHM system has three major components: fault and failure management (diagnostic capability), life and usage management (prognostic capability), and data management. PHM diagnostic and data management capabilities remain immature. The program has yet to integrate any prognostic capabilities; the first set of algorithms is planned for ALIS 2.0.2.

- Diagnostic capability should detect true faults within the air vehicle and accurately isolate those faults to a line replaceable component. However, to date, F-35 diagnostic capabilities continue to demonstrate poor accuracy, low
FY16 DOD PROGRAMS

Detection rates, and also have high false alarm rates.
Although coverage of the fault detection has grown with
the fielding of each Block of F-35 capability, all metrics of
performance remain below threshold requirements. The
table below compares specific diagnostic measures from the
ORD with current values of performance through April 2016.

- PHM monitors nearly every on- and offboard system on the
 F-35. It must be highly integrated to function as intended
 and requires continuous improvements for the system to
 mature.
- Poor diagnostic performance increases maintenance
downtime. Maintainers often conduct BITs to see if the
fault codes detected by the diagnostics are true faults. False
failures (diagnostics detecting a failure when one does not
exist) require Service personnel to conduct unnecessary
maintenance actions and often rely on contractor support
to diagnose system faults more accurately. These actions
increase maintenance man-hours per flight hour, which
in turn can reduce aircraft availability rates and sortie
generation rates. Poor accuracy of diagnostic tools can also
lead to desensitizing maintenance personnel to actual faults.
- The number of false alarms recorded within ALIS can be
 artificially lowered, as qualified maintenance supervisors can
defier or cancel an HRC without generating a work order for
maintenance actions, if they know that the HRC corresponds
to a false alarm not yet added to the nuisance filter list. The
defferred or canceled HRC will not result in the generation
of a work order, and it will not count as a false alarm in the
metrics in the table below. The program does not score an
HRC as a false alarm unless a maintainer signs off a work
order indicating that the problem described by the HRC did
not occur. Because PHM is immature and this course of
action saves time for the maintainers, it occurs regularly at
field locations; however, this means the number of recorded
false alarms is not always an accurate reflection of the HRC
false alarm rate.
- Comparing the values in the table below with those in the
FY15 DOT&E Annual Report shows improvement in Fault
Detection Coverage, Fault Detection Rate, Fault Isolation
Rate for non-electronic faults to one Line Replaceable
Component (LRC), and – most significantly – Mean Flight
Hours Between Safety Critical False Alarms. Mean Flight
Hours Between False Alarms and Fault Isolation Rate
for non-electronic faults to three or fewer LRCs show
no significant improvement, and Fault Isolation Rate for
electronic faults to one LRC has gotten worse since last
year’s report. At this time, Mean Flight Hours Between
Flight Safety Critical False Alarm and Fault Isolation Rate
for non-electronic faults to one LRC are the only diagnostic
metrics which appear to be improving adequately toward
meeting their threshold requirements. The program planned
for accurate diagnostics to support a planned level of
sustainment; poor diagnostics contribute to poor reliability
and maintainability metrics, reducing aircraft availability and
increasing aircraft downtime.
- Following are the systems most likely to result in missed
fault detections, incorrect fault isolations, and false alarms as of
April 2016.
 - Missed detections: Integrated Core Processor (ICP),
 Communications, Navigation, and Identification (CNI)
rack modules, Panoramic Cockpit Display, Power and
 Thermal Management System (PTMS), and vehicle system
 processing.
 - Incorrect isolation: ICP, PTMS, EW, electric power, and
 hydraulic power system.
 - False alarms: Propulsion, CNI system, EW, ICP, and
 displays and indicators in general.
- The Program Office initiated a PHM maturation plan in
2015 to improve the performance of each of the three major
components of PHM:
 - Improving BIT functionality, PHM software handling of
 BIT results, and off-aircraft filter lists and fault isolation
 instructions; also focusing on identified high-fault drivers
to prioritize developing AFRS solutions with the greatest
impact on fault detection and isolation, false alarm
performance, unnecessary maintenance, high maintenance man-hours, aircraft availability, and excess cost

- Improving the functionality of PAIRS and algorithms which assess materiel condition based on usage and repair feedback, potentially adding new life tracking items based on fleet experience
- Improving or adding data collection from the air vehicle, improving data downloading and processing from the aircraft to ALIS, and improving distribution and storage of data to better support user needs

- Structural PHM (SPHM) is a key element of overall airframe life-cycle management. It includes conditional event detection and analysis, including over-g, hard landing, overspeed, and overload conditions, and is planned to provide a corrosion monitoring and predictive modeling capability. The air vehicle currently includes two corrosion sensors—one on the forward face of the radome bulkhead and the other on the wall of the bay housing the fuel/heat exchanger. ALIS 2.0.0 included a logging function for these corrosion sensors. A Program Office study completed in November 2015 determined that 27 percent of the corrosion sensors in the fleet had failed, so the program is in the process of developing a new sensor manufactured with more precise sealing applications to be used during production instead of upon installation.

Air-Ship Integration and Ship Suitability Testing

F-35B

- The integrated test team from Patuxent River, Maryland, conducted the third and final planned set of F-35B ship trials, referred to as Developmental Test III (DT-III), from October 28 through November 17, 2016, on USS America. The objectives for this 3-week developmental test event included:
 - Expanding the vertical landing flight envelope for both day and night operations (higher wind-over-deck conditions and operations at higher sea states than earlier ship trials, as well as operating from additional landing spots farther forward on the flight deck)
 - Evaluating the Gen III HMDS for nighttime landings, with or without landing aids on the ship
 - Assessing Joint Precision Approach Landing System (JPALS) functionality
 - Conducting vertical landings and short take-offs with symmetric and asymmetric external loads carriage
 - Expanding vertical take-off capability
 - Evaluating environmental effects from flight operations, such as the thermal tolerance and response of the flight deck to vertical landings and noise surveys from various ship locations
 - Conducting maintenance demonstrations— including engine and lift fan removal and replacement actions, and a power module maintenance demonstration— and loading and unloading of external stores
- Evaluating the operational capability of the first deployment of an ALIS SOU v2 on the ship
- Besides the two developmental test aircraft from the Patuxent River test force (BF-1 and BF-5), the Marine Corps also supported the test activities by providing an additional three instrumented operational test aircraft assigned to VMX-1, the operational test unit at Edwards AFB, California, and two fleet aircraft from VMFA-211, one of the two operational units at MCAS Yuma, Arizona. Although primarily a developmental test event, the Marine Corps embarked fleet and operational test squadron personnel for training, and to inform the JSF Ship Integration Team in preparation for the first operational F-35B deployment onboard USS Wasp, planned for late 2017. From November 17 – 21, the Marine Corps also conducted a “Lightning Carrier” proof of concept demonstration, with an additional five F-35B fleet aircraft plus two MV-22 and two H-1 Air Combat Element (ACE) assets deployed to the ship to assess interoperability and the suitability of F-35B “Heavy” ACE configurations on LHA-class ships. Observations from this testing included:
 - The specialized secure space set aside for F-35-specific mission planning and the required Offboard Mission Support (OMS) workstations is likely too small and therefore unsuitable for regular ACE operations with the standard complement of six F-35B aircraft—let alone F-35B Heavy ACE configurations with more aircraft. Due to the classification of certain F-35 capabilities, pilots must conduct mission planning in a secure space. The ALIS SOU v2, which has several classified components, was also located in this space. However, pilots, the ALIS administrator, and security personnel commented that the compartment designated for the secure workspace onboard USS America was too small to accommodate enough OMS workstations and a sufficient briefing and debriefing area. Marine Corps and ship personnel are investigating using this compartment for ALIS only, and designating an alternate compartment for mission planning.
 - The power module maintenance demonstration was intended to show that a deployed unit could conduct modular engine maintenance at-sea. The F135 engine is modular, with a fan and compressor section; a power section with the combustion chamber and turbine stages; an afterburner section, which on the F-35B consists of a Three-Bearing Swivel Module (3BSM) that can rotate downward to more than 90 degrees for vertical flight; and a nozzle section. The general maintenance concept for a failed engine is to replace only the defective module on any given engine to return the overall engine to service more quickly, and send the defective module to depot-level repair. The demonstration consisted of splitting open an F135 engine mounted on two aligned Maintenance and Transportation Trailers (MTTs) into its modularized sections, removing a “bad” power module, taking a “good” spare power module out of its shipping and storage container, placing the good module into the
engine, and containerizing the bad module, all with the use of an overhead bridge crane in the aft high bay of the hangar bay. The demonstration showed that maintainers could swap a module at sea; however, the evolution took up a large amount of space in the hangar bay and occurred without a full ACE onboard. The Navy and Marine Corps should conduct some further analyses, such as an operational logistics footprint study which simulates flight deck and hangar bay spotting with a full ACE onboard, using data from this evolution to determine what the impact of this maintenance would be on integrated ship and ACE operations with a full ACE onboard.

- The detachment planned to stage an F135 engine removal and installation (R&I) demonstration, but early in the deployment maintainers discovered, during a Post-Operations Servicing, that one of the OT aircraft (BF-20) had a thrust pin that had unseated. There are several thrust attachments between the engine and the airframe that transfer the propulsive forces produced by the engine to the airframe, and this was the first time in program history that maintainers discovered a thrust pin had backed out of full engagement, a serious safety of flight concern. As a result, the unit submitted an AR to request disposition. The AR response directed that the engine be removed from the aircraft, and the thrust pin attachment points on both the engine and airframe be thoroughly inspected. This provided a natural opportunity to evaluate an actual engine R&I as opposed to a staged demonstration. The unit provided photos and dimensional data to the Lightning Support Team (LST), initiating a long investigation process to determine the root cause, but there were no immediately obvious signs of wear or damage. The LST eventually directed the squadron to replace the engine, as there was a full spare engine onboard, and the lift fan drive shaft. The squadron completed this maintenance in the hangar bay and, on November 16, conducted a High-Speed Low-Thrust (HSLT) engine operation on the flight deck to confirm that the new engine was installed correctly and fully functional. The unusual circumstances of this event primarily drove the 2-week long R&I process, as opposed to specific shipboard conditions and, by the time of this report, the program had not yet determined a root cause. However, the engine R&I was practically aided by the fact that, for this detachment, a full spare engine was available for immediate installation. Currently, the program’s planned Afloat Spares Package of spare parts that will be loaded onboard the USS Wasp for the first F-35B deployment in 2017 will not have a full spare engine, only spare propulsion modules. See the F-35C ship suitability section for further details on F135 engine R&I concerns at sea.

- The squadron also conducted a staged lift-fan R&I demonstration on BF-20 while it was in an NMC status in the hangar bay for the engine R&I. Maintainers positioned the aircraft along the ship’s centerline and directly beneath the bridge crane in the forward of two high bays. Organic Marine squadron personnel first used a collapsible, portable floor crane and an assembled support frame to cradle the upper lift fan door and remove it from the aircraft, and then place it on the deck. After maintainers attached another assembled frame to the top and sides of the lift fan, ship personnel used the overhead bridge crane to raise the lift fan out of the aircraft cavity and, via attached tether ropes to each of the four top corners of the frame to guide the lift fan, lowered it to a support cradle on the deck. Service personnel then reversed this process to reinstall the lift fan. After the upper lift fan door was reinstalled and maintainers were disassembling the support frame that attaches the door to the crane, a portion of this assembly fell onto the lift fan, damaging a stator strut at the top of the lift fan. Repairs to this strut took another couple of days to complete. Maintenance personnel noted several improvements that should be incorporated into this process; most importantly, the tether points for the lift fan support assembly need to be moved to the bottom four corners for better control, as the tethers provided very little control near the hook point of the crane; also the program should provide a protective maintenance cover for the lift fan to prevent damage during future lift fan R&I’s or upper lift fan door maintenance.

- On November 15 and 16, a single fleet aircraft from VMFA-211 departed from USS America to drop live ordnance on targets on an inland range, hot-pitted for fuel from MCAS Yuma, Arizona, and returned to the ship each day. Both sorties dropped one GBU-12 laser-guided bomb and one GBU-32 JDAM. The Marine Corps originally intended to fly two loaded aircraft each day, but the lack of available mission-capable aircraft drove the detachment to launch only a single aircraft each day.

- While the set of sea trials were not focused on operational realism, several aspects were more operationally representative than the 2015 F-35B deployment demonstration onboard USS Wasp. The aircraft had a full suite of Block 2B electronic mission systems installed, unlike onboard USS Wasp; however, like the USS Wasp demonstration, these aircraft mission systems were not maintained to a full combat-mission-capable state of readiness. Unlike in 2015, the OT and fleet aircraft were maintained to a full combat-mission-capable state of readiness. The OT aircraft were cleared to carry live ordnance on the flight deck, with some workarounds. With this clearance, the test team intended to employ live ordnance on missions. Production representative support equipment (SE) was onboard ship for the first time as well for use on the non-OT aircraft. Similar to the 2015 demonstration, the operational logistics support system, known as the Autonomic Logistics Global Sustainment system, was still not available. As a result, spares provisioning and supply support were not necessarily the same as would be expected on a combat deployment.

F-35C

- The third and final phase of F-35C ship suitability testing, designated Developmental Test III (DT-III), was conducted by VX-23, the developmental test team from Patuxent River,
from August 10 – 26, 2016, aboard USS *George Washington*. The primary objective of DT-III was to complete characterization of the flying qualities of the F-35C aircraft for catapult launches and arrested recoveries, building on the results from two previous at-sea developmental test periods. The test team explored aircraft flight operations around the carrier in high crosswind conditions and, for the first time, with external ordnance, including asymmetric load-outs. Both day and night operations were conducted, allowing for assessments of the Gen III HMDS for night approaches and landings under varying light conditions. These investigations will help develop aircraft launch and recovery bulletins to an expanded envelope to support fleet operations. Also, while the ship was underway, VFA-101, the Navy’s F-35C training squadron at Eglin AFB, Florida, participated in the event for other test objectives, including a Commander of Naval Air Forces (CNAF)-directed proof-of-concept demonstration of an F-35C engine R&I in the ship’s hangar bay as well as initial day carrier qualifications for 12 pilots that would assess overall suitability of catapult launches and the Delta Flight Path capability for carrier approaches and landings.

- Initially, only developmental test aircraft CF-3 and CF-5 (transient aircraft needed for logistical support) and search and rescue helicopters deployed to the carrier. No air wing was present. Five VFA-101 aircraft deployed onboard the ship from August 14 – 18. The major contractor and test team were responsible for maintenance of CF-3 and CF-5, although fleet maintenance personnel supported the VFA-101 carrier qualifications and the engine R&I demonstration. ALIS was not installed on the carrier; it was accessed via satellite link to a location ashore.

- The developmental test team conducted night operations with modifications to the Helmet Display Unit for the Gen III HMDS that permitted lower illumination settings, intended to reduce the amount of “green glow” in the helmet display that makes seeing the lights on the carrier difficult during night operations. The test pilots reported that the refined brightness control somewhat improved the night carrier approaches; however, “green glow” was still a significant problem and is the subject of two Category 1 deficiency reports.

- From the carrier qualifications, the VFA-101 pilots found the F-35C catapult shot not operationally suitable due to excessive vertical (Nz) oscillations during launch. Although numerous deficiencies have been written against the F-35C catapult shot oscillations – starting with the initial set of F-35C ship trials (DT-I) in November 2014 – the deficiencies were considered acceptable for continued developmental testing. The fleet pilots reported that the oscillations were so severe that they could not read flight critical data, an unacceptable and unsafe situation during a critical phase of flight. Most of the pilots locked their harness during the catapult shot, which made emergency switches hard to reach, again creating an unacceptable and unsafe situation.

- The VFA-101 pilots reported that the Delta Flight Path mode of operation made carrier approaches easier on pilot workload and touchdown points more consistent. During the qualifications, pilots made 154 approaches and landings with 100 percent boarding rate and no bolters.

- The engine R&I proof-of-concept demonstration took 55 hours to complete and used about one-third to one-half of one of the three hangar bay partitions; this is much more space than that needed for an F/A-18 engine change. Because it was the first F-35C engine R&I demo at-sea, maintainers moved through all required steps at a slow pace to ensure safety first, which may have extended the timeline relative to what an experienced crew could achieve during routine maintenance operations. On the other hand, the maintainers had practically free use of most of the hangar bay space, which may have facilitated speedier maintenance relative to conducting an engine R&I with a full air wing onboard. As a result, actual engine R&I’s during deployments may not differ drastically in time from this demonstration.

- While the proof-of-concept demonstration showed that an engine could physically be swapped at sea, it also revealed that such a major maintenance evolution would be very difficult, time consuming, take up a large amount of space, and be a drastic change from the engine R&I on legacy aircraft. The F-35C engine change is also more labor- and space-intensive than the F-35B engine R&I, such as conducted onboard the USS *America*. The F-35B engine R&I is aided by the aircraft’s 3BSM doors, which open during regular operation to enable the exhaust nozzle to rotate downward to more than 90 degrees for vertical flight. Opening these doors for engine maintenance avoids the need to remove fixed panels, such as on the F-35A and F-35C. For the F-35C, many more skin panels and a large piece of structure known as the tail hook trestle, although not the tail hook itself, must be removed for an engine R&I. Storing these items, and the associated tubes and wire harnesses, so they will not be damaged while off the aircraft, also takes up additional space. The fact that the demonstration was conducted without a full air wing on the ship additionally limited the test team’s ability to assess the likely impact of an F-35C engine change on integrated carrier-air wing operations. Such an assessment will be needed for IOT&E. Because of the complexity and time required to conduct an engine change, the Navy and JPO should investigate alternatives for determining the impact of an R&I while conducting carrier-air wing operations as well as improving the maintainability of the F-35 system at sea.

- Both the F-35B engine R&I onboard USS *America* and the F-35C engine R&I onboard USS *George Washington* were hampered by the lack of suitable strut locks approved for at-sea use, considering the rolling and pitching motion that may be experienced while underway. Since the engine is a significant part of the aircraft weight, without strut locks
the airframe would raise up on the pressurized landing gear struts as soon as the engine was detached. This could potentially damage either the engine or airframe due to tight tolerances, or injure maintainers with hands in the area. In both cases, maintainers put the aircraft up on jacks to de-service the struts before the engine change, and then raised the aircraft back up on jacks to re-service the struts after the change, adding significant time to the process. Further, ship maneuvering is restricted when raising and lowering aircraft on jacks; engine R&I times could be decreased if the program develops, and the Navy approves, appropriate strut locks for at-sea use.

- Maintainers conducted a less extensive power module maintenance demonstration onboard USS George Washington than the one performed on USS America, consisting of removing a power module from its container in the hangar bay, moving it to the engine repair shop aft of the hangar bay, and returning it to its container. To open the container, maintainers used a motorized, wheeled, mobile crane that is part of the ship’s SE complement to raise the container lid, which is composed of the roof and four side walls, over the encapsulated power module, and set it to the side in the hangar bay. A specialized Electric Pallet Jack (EPJ) was then used to move the power module, still attached to the container bottom, to the engine repair shop, where it could be transferred to an MTT via an overhead bridge crane. Maintainers expressed dissatisfaction with the container design, which required a large amount of space and a large piece of SE to remove, and stated that, while suspended on a possibly pitching and rolling ship, such a heavy item could present a safety hazard. They stated a preference for the type of container used for the T56 engine, installed on the E-2 Hawkeye and C-2 Greyhound aircraft. This type of container has a door on one side that opens outward, with the engine mounted on rails inside. An MTT can be wheeled up to the container and the engine slid onto it by hand. This configuration takes up less space to remove an engine, doesn’t require any SE, is quicker, and presents fewer hazards. The current container is designed to a very high standard of structural integrity in order to withstand a fall if ever resupplied by moving it across a wire strung between a resupply ship and a carrier, a standard form of resupply at sea. However, only the planned heavy E-Stream wire system was capable of moving the heavy power module container, but this program is now canceled. The Navy now plans to resupply un-containerized power modules via internal carriage on a CV-22 aircraft, and containerize any spare modules onboard ship if needed for storage. The program and the Navy should investigate if the heavy power module container should be redesigned for better usability at sea.

- Current program plans do not provide a full spare engine for the envisioned Afloat Spares Package of parts that will go onboard Navy CVN and L-class ships to support F-35C and F-35B squadrons, respectively. This will significantly increase the amount of time required to conduct an actual engine change. The 55-hour timeline measured during the proof-of-concept demonstration provided above assumed a full spare engine ready for immediate install once the down engine is removed from the aircraft. Without a spare, the time required to troubleshoot the down engine to a bad module, disassemble the engine to swap that module, and then reassemble the engine to reinstall it into the aircraft must be added to the overall process; this can easily add several more days of downtime to the affected aircraft. Further, the probability of Foreign Object Damage (FOD) to engines is higher at sea than ashore, which may drive more frequent engine R&Is at sea. This is due to the close proximity of aircraft maintenance to the ship landing areas allowing foreign objects to migrate, and the more stressing arrested or vertical landings at sea, which can increase the probability of items like fasteners falling off an aircraft into the landing area.

- Access to ALIS offboard the ship via the ship’s satellite communications was intermittent and troublesome, making transmitting large file sizes difficult. For example, a 200 MB file required 2 days to successfully transfer due to bandwidth limitations and inconsistent connectivity. These issues drove VFA-101 to operate in an ALIS offline mode for the majority of the detachment. While the root cause appeared to be due to limitations with the shipboard communications equipment vice ALIS directly, and deployed units will have an SOU onboard ship, the SOU will occasionally have to transmit large files to the CPE due to how data-intensive ALIS is. This requirement to communicate large amounts of information will likely be exacerbated after a ship emerges from a restricted Emissions Control (EMCON) period where transmissions from the ship are severely limited or cut-off completely. The program and the Navy should investigate potential options to improve ship-based communications bandwidth dedicated to ALIS connectivity off-ship, such as increasing the priority of ALIS transmissions, or reserving low-use times of the day for transmitting large volumes of ALIS message traffic.

- VFA-101 brought a suite of production-representative SE to the aircraft carrier, including electrically powered hydraulic, air conditioning, and polyalphaolefin (PAO) carts for use in the hangar bay. Personnel use the PAO cart to service the aircraft with this special fluid that cools the radar and some other avionics. The Navy prefers that SE for use in hangar bays be electrical vice diesel powered because of the enclosed environment. They also brought an engine R&I trailer and an engine maintenance trailer, needed for the engine maintenance demo. Collectively, these items of SE were larger than legacy items and took up a large amount of deck space. Hangar bay personnel commented that the size of the SE would also make them more difficult to move around a crowded hangar bay with a full air wing onboard. The Navy should investigate any efficient, multi-use opportunities for F-35 SE, such as using legacy SE on the F-35 or F-35 SE on legacy aircraft, to try to limit the impact on the overall SE footprint for an air wing with F-35
FY16 DOD PROGRAMS

included. Additionally, the JOTT will evaluate SE operation and movement around the flight deck and hangar bay during IOT&E.

- Since the hangar-bay SE items are electrical, they rely on 440V power from outlets in the walls of the ship. Maintenance on a single F-35C can sometimes require external power, provided by a small transformer power cart that converts the 440V wall power to the 270V and 28V DC power used by the aircraft, along with air conditioning and hydraulic power, each requiring separate carts. Such maintenance activities would require the use of three wall outlets. However, most hangar bay partitions had four outlets, which would make simultaneous maintenance on more than one F-35C in a partition a coordination challenge. The Navy should investigate options for increasing the number of wall power outlets in hangar bays to help facilitate simultaneous maintenance on multiple F-35Cs, or the ability to interconnect multiple pieces of support equipment from a single outlet to permit simultaneous operations.

- The Navy is working on the following air-ship integration issues, primarily for carrier operations. Some of the following issues also apply to F-35B operations on L-class ships:
 - Flight deck Jet Blast Deflectors (JBDs) will require additional side panel cooling in order to withstand regular, cyclic limited afterburner use, during F-35C catapult launches. JBDs are retractable panels that redirect hot engine exhaust up and away from the rest of the flight deck when an aircraft is at high thrust for take-off. During IOT&E, an F-35C detachment will deploy to a CVN to evaluate sortie generation rate capability within an air wing context. The CVN used for IOT&E must have additional side panel cooling installed in the JBDs to enable the most operationally representative test to evaluate this Key Performance Parameter of the F-35C.
 - The Navy continues to procure a replacement mobile Material Handling Equipment crane for several purposes onboard carriers, including lifting the power module container lid as described above. This crane will only be used on CVNs, for F-35 maintenance only, as they lack the hangar-bay overhead cranes that L-class ships come equipped with. Since the FY15 DOT&E Annual Report, the crane acquisition has proceeded at a pace such that sufficient articles should be in the fleet in order to support a first F-35C deployment in the 2020 timeframe.
 - Two methods of shipboard aircraft firefighting for the F-35 with ordnance in the weapons bays are being developed, one for doors open and one for doors closed. Each method will use an adapter that can fit to the nozzle of a standard hose. The open door adapter will also attach to a 24-foot aircraft tow bar so firefighters can slide it underneath the aircraft and spray cooling water up into the bay. Development of this open door adapter is proceeding well and it was deployed to the USS America to support live ordnance carry by the OT and fleet F-35B aircraft during DT-III. However, the closed bay adapter, which intends to use water pressure to drive a saw to cut into the aircraft and lock a hose in place to douse a loaded weapons bay during a flight deck fire, was not yet ready for deployment. As a workaround, F-35B aircraft on USS America with live ordnance taxied with their weapons bay doors open, closing them only right before take-off, to mitigate the risk, but this will not be a standard practice for combat deployments.

Cybersecurity Operational Testing

- The JOTT continued to accomplish testing based on the cybersecurity strategy approved by DOT&E in February 2015, with some modifications due to test limitations, discussed below. In accordance with this strategy, in FY16 the JOTT conducted adversarial assessments (AA) of the ALIS 2.0.1 Squadron Kit and Central Point of Entry (CPE), completing testing that began in Fall 2015, and conducted cooperative vulnerability and penetration assessments (CVPA) of the mission systems Autonomic Logistics Operating Unit (ALOU) used to support developmental testing (referred to as the DT-ALOU), and the operational ALOU. The JOTT also completed a limited cybersecurity assessment of the F-35 air vehicle. These tests were not conducted concurrently as originally planned; therefore, end-to-end testing of ALIS, from the ALOU to the air vehicle, has not yet been accomplished. The JOTT initially tested the DT-ALOU in lieu of the operational ALOU because the JPO did not approve an Interim Authority to Test for the ALOU due to concerns that cybersecurity testing would adversely affect the ALOU’s operations; however, a limited test of the operational ALOU was completed in October 2016 and an AA was scheduled for December 5 – 9, 2016.
 - The U.S. Navy’s Commander, Operational Test and Evaluation Force (COTF) conducted a CVPA and limited AA against the DT-ALOU, from April 1 – 15, 2016, at Lockheed Martin’s Fort Worth facility. The COTF testing verified that the DT-ALOU, configured with ALIS 2.0.1.3, had mitigated several key vulnerabilities discovered on ALIS 2.0.1.1 systems during fall 2015 testing. However, this testing of the DT-ALOU was not operationally representative because several key systems and external interfaces, from which cyber-attacks might originate, were not present. The testing was further constrained because the Program Office and Lockheed Martin only permitted testing to occur during overnight hours while the DT-ALOU was disconnected from external networks to minimize interference with operations. The COTF testing still discovered several minor security problems with the DT-ALOU. The operational ALOU is still configured with ALIS 2.0.1.1.
 - The U.S. Marine Corps Information Assurance Red Team (MCIART) conducted an AA of the Marine Fighter Attack Squadron 211 (VMFA-211) ALIS 2.0.1.3 Squadron Kit at Marine Corps Air Station Yuma, Arizona, April 25 through May 6, 2016. The unit’s Squadron Kit was in the process of being stood up, so it was not in a fully operational configuration during the test. The operational
The U.S. Air Force 177th Information Aggressor Squadron (IAS) conducted an AA against the ALIS 2.0.1.3 Central Point of Entry (CPE) at Eglin AFB, Florida, from June 2 – 10, 2016. The 177 IAS assessed the system as an outsider and near-sider threat, and discovered vulnerabilities with various components of the CPE, despite the fact that Lockheed Martin administrators and ALIS users had implemented new operating procedures during the test to improve the CPE security posture. The CPE classified servers were not adequately assessed due to time constraints and a lack of approval for connecting 177 IAS equipment to the classified CPE network.

The JOTT, with support from the Air Force Research Laboratory (AFRL), conducted a limited CVPA of the F-35A Block 2B air vehicle, from September 26 – 27, 2016, at Edwards AFB, California. The CVPA tested the process by which the air vehicle validates the digital signature of files within the operational flight program when it is loaded onto the aircraft via the aircraft media device. This test was one of the test cases proposed by cybersecurity subject matter experts, and was the first cybersecurity assessment of an operational F-35 air vehicle. The successful accomplishment of this initial test should encourage the Program Office to examine other planned test cases in future air vehicle cybersecurity assessments. Analyses of the test results are ongoing.

The COTF and the JOTT conducted a CVPA of the operational ALOU October 17 – 28, 2016, at Lockheed Martin’s Fort Worth facility. The test team was augmented by Lockheed Martin Red Team members so that the ALOU could be examined for vulnerabilities from the Lockheed Martin Intranet (LMI). COTF and the JOTT were not permitted to conduct any test activities on the ALOU unless it was disconnected from the LMI, limiting the operational realism of the test and precluding certain vulnerabilities from being assessed. Detailed analyses of the data collected are ongoing.

In response to DOT&E’s recommendation that active intrusion discovery and forensics, referred to as a Blue Hunt, be conducted on the Squadron Kit and CPE, the JOTT has scheduled the 855th Cyber Protection Team (CPT) to conduct two events for the end of CY16. Current plans are to perform mostly vulnerability assessment and traditional Red Team activities against these systems—not active intrusion discovery and forensics—and so it is still unclear whether these events will fulfill DOT&E’s request. Additionally, the JOTT will need to conduct a Blue Hunt on the ALOU once ALIS 2.0.2.4 is loaded and then additional Blue Hunts on all ALIS levels (ALOU, CPE, and Squadron Kit) each time a full increment of ALIS software is released.

While progress towards fulfilling missed test opportunities in 2015 was considerable in 2016, full end-to-end cybersecurity testing of the ALIS architecture, from the operational ALOU to the air vehicle, remains to be completed. The JOTT is planning concurrent assessments of the ALIS 2.0.2 Squadron Kit, CPE, and ALOU in 2017. The JOTT is also exploring testing opportunities on the F-35 training systems, and has begun exploring options for testing systems at the U.S. Reprogramming Laboratory, which generates mission data files for the F-35.

The JPO continued to develop its Operationally Representative Environment (ORE); it plans to perform verification, validation, and accreditation (VV&A) testing in order to conduct future operational testing on ALIS components within the ORE. Regardless of whether the ORE completes VV&A, the JOTT is working with the JPO and Lockheed Martin to plan cybersecurity testing of ALIS components within the ORE for purposes of risk reduction ahead of continued cybersecurity testing of the operational ALIS systems.

DOT&E Response to Senator McCain’s Questions Regarding the Completion of SDD

In a letter to the SECDEF on November 3, 2016, Senator McCain asked the Department to respond to questions regarding the completion of SDD. The letter was prompted by, and cited, recent revelations that the program would be experiencing yet another delay in completing SDD and cost overruns that may be upwards of $1 Billion.

Although USD(AT&L) responded to the Senator on behalf of the Department in a letter dated December 19, 2016, the following are DOT&E’s responses to each of the questions.

Question #1: When will the Department complete the SDD phase of the F-35?

- **DOT&E Answer:** SDD will close out in multiple phases. Developmental flight testing is projected to end no earlier than mid-2018, based on independent estimates on completing mission systems flight testing—the testing that will likely take the longest to complete. These estimates—from the Director of Cost Assessment and Program Evaluation (CAPE) of March 2018, the Director of Developmental Test and Evaluation of March to June 2018, Deputy Assistant Secretary of Defense for Systems Engineering of July 2018, and my office of July 2018—are all later than the program’s estimate, based on the amount of planned mission systems test points remaining. (These estimates are optimistic because they do not fully account for the corrections and verification testing needed for the more than 270 high-priority deficiencies in Block 3F performance identified by a recent review.) Then, incremental deliveries of the Block 3F
capabilities (i.e., flight envelope, weapons, and avionics) for each variant will likely not be completed until late 2018 due to continued delays and discoveries with F-35B and C flight sciences testing, along with weapons testing. Finally, contract close out actions, including specification compliance and verification and validation, will complete no earlier than late 2019. Completion of all required contracting action for the SDD phase will likely continue for a number of years.

Question #2: How many additional funds, in each upcoming fiscal year budget, will be required to complete F-35 SDD?

- DOT&E Answer: Although DOT&E does not conduct independent cost estimates, CAPE estimated that the program would need an additional $550 Million in FY18 to finish the necessary and planned developmental test points and produce additional software versions to fix and verify the important known and documented deficiencies, then an additional $425 Million in FY19 and $150 Million in FY20 to complete SDD. These estimates add up to an additional $1.125 Billion required to complete SDD. The Program Office estimate is about one-half of the CAPE estimate.

Question #3: What other Service priorities will not receive funding in fiscal year 2018 due to the SDD delay and cost overrun?

- DOT&E Answer: Although the program recently claimed that their estimated SDD overrun can be covered by reallocating existing JSF program funding (other than $100 Million in flight test risk), the SDD cost increase will be much larger than the current program estimate for the reasons described in this report. Therefore, the overrun will not be completely covered with only program funds and the Services will likely need to address the SDD cost increase from within their budgets, or funding currently designated for Follow-on Modernization (FoM) will need to be reallocated to complete SDD.

Question #4: Is Secretary James’ Block 3F full combat capability certification, as required by the Fiscal Year 2016 NDAA, still valid?

- DOT&E Answer: For many reasons, it is clear that the Lot 10 aircraft that will begin delivery in early 2018 will not initially have full Block 3F capability. These reasons include, but are not limited to, the following:
 - Envelope limitations will likely restrict the full planned Block 3F carriage and employment envelopes of the AIM-120 missile and bombs well into 2018, if not later.
 - The full set of geographically specific area of responsibility mission data loads (MDLs) will not be complete, i.e., developed, tested and verified, until 2019, at the soonest, due to the program’s failure to provide the necessary equipment and software tools for the U.S. Reprogramming Laboratory (USRL).
 - Even after the MDLs are delivered, they will not be tested and optimized to deal with the full set of threats present in IOT&E, let alone in actual combat, which is part of full combat capability.
- The program currently has more than 270 Block 3F unresolved high-priority (Priority 1 and Priority 2, out of a 4-priority categorization) performance deficiencies, the majority of which cannot be addressed and verified prior to the Lot 10 aircraft deliveries.
- The program currently has 17 known and acknowledged failures to meet the contract specification requirements, all of which the program is reportedly planning to get relief from the SDD contract due to lack of time and funding.
- Dozens of contract specification requirements are projected to be open into FY18; these shortfalls in meeting the contract specifications will translate into limitations or reductions to full Block 3F capability.
- Estimates to complete Block 3F mission systems extend into the summer of 2018, not just from DOT&E, but other independent Department agencies, making delivery of full capability in January 2018 nearly impossible to achieve, unless testing is prematurely terminated, which increases the likelihood the full Block 3F capabilities will not be adequately tested and priority deficiencies fixed.
- Deficiencies continue to be discovered at a rate of about 20 per month, and many more will undoubtedly be discovered during IOT&E.
- ALIS version 3.0, which is necessary to provide full combat capability, will not be fielded until mid-2018; also, a number of capabilities that had previously been designated as required for ALIS 3.0 are now being deferred to later versions of ALIS (i.e., after summer of 2018).
- The Department has chosen to not fund the CAPE estimate for the completion of Block 3F mission systems testing lasting until mid-2018, an estimate which is at least double the Program Office’s latest unrealistic estimate to complete SDD. This guarantees the program will attempt a premature resource- and schedule-driven shutdown of mission systems testing, which will increase the risk of mission failures during IOT&E and, more importantly, if the F-35 is used in combat.
- Finally, rigorous operational testing, which provides the sole means to evaluate actual combat performance, will not complete until at best the end of 2019—and more likely later.

Question #5: How will this delay and cost overrun affect the current overall schedule for Joint Strike Fighter deliveries to the Services?

- DOT&E Answer: The Program Office currently has no plans to delay the production and delivery schedule of aircraft to the Services. However, since Lot 10 aircraft will not initially be delivered with full combat capability, including operational MDLs for Block 3F, the Services will need to plan for accepting aircraft with less capability,
possibly with Block 3i capability, until full Block 3F capability can be delivered.

Question #6: When will you complete the operational test and evaluation phase?
• DOT&E Answer: The IOT&E is planned to cover a span of approximately 12 months, and will start after the program is able to meet the TEMP entrance criteria and the Department certifies that the program is ready for test. These entrance criteria are common-sense and carefully defined requirements that were well-coordinated with the Services and JPO as the TEMP was being staffed. Meeting these criteria to enter IOT&E is necessary to ensure the test is conducted efficiently and effectively within the time span planned and to minimize the risk of failing IOT&E, or causing a “pause test” and having to reaccomplish costly test trials, which would only further delay the completion of IOT&E and increase program costs. Since the program will not be ready to start IOT&E until late 2018, at the earliest, and more likely 2019, completion of IOT&E will not occur until late 2019 or early 2020.

Question #7: When will you make the Milestone C/Full-Rate Production decision?
• DOT&E Answer: Since the Milestone C/Full-Rate Production decision cannot be made until after IOT&E is completed and DOT&E has issued its report, it cannot occur by the threshold date of October 2019 and will likely not occur until early 2020, at the soonest.

Question #8: Will you defer any planned F-35 capabilities from SDD into the F-35 Follow-on Modernization (FoM) program?
• DOT&E Answer: Multiple F-35 capabilities will be deferred from SDD or not function properly in Block 3F unless the program continues testing and fixing deficiencies. The program currently has hundreds of unresolved deficiencies and immature capabilities, including 17 documented failures to meet specification requirements for which the program acknowledges and intends to seek contract specification changes in order to close out SDD.

Question #9: How will the SDD delay affect the Follow-on Modernization (FoM) program?
• DOT&E Answer: Delays to the completion of SDD will impact both the FoM program schedule and content. While FoM is critical for the capabilities needed with the F-35 and the program is attempting to minimize delays, the program does not appear to be ready to complete all prerequisites to start full development in FY18, as planned. Also, IOT&E will not be complete until late 2019 or early 2020, which overlaps with the planned test periods for Block 4.1. Finally, the program’s current plans for FoM are not executable, for many reasons, which include the following:
 - Too much technical content for the production-schedule-driven developmental timeline
 - Overlapping capability increments without enough time for deficiencies from OT to be fixed prior to releasing the next increment
 - High risk due to excessive technical debt and deficiencies from the balance of SDD and IOT&E being carried forward into FoM because the program does not have a plan or funding to resolve key deficiencies from SDD prior to attempting to add the planned Block 4.1 capabilities
 - Inadequate test infrastructure (aircraft, laboratories, personnel) in the current FoM plan to meet the testing demands of the capabilities planned and the multiple configurations (i.e., TR2, TR3, and Foreign Military Sales)
 - Insufficient time for conducting adequate DT and OT for each increment

Question #10: When will you provide your final response either to validate the current requirement for the F-35 Joint Strike Fighter total program of record quantity or identify a new requirement for the total number of F-35 aircraft that the Department would ultimately procure?
• DOT&E Answer: DOT&E is not aware of when the Department will complete these actions.

Recommendations
• Status of Previous Recommendations. The program adequately addressed 5 of the 14 previous recommendations. As discussed in the appropriate sections of this report, the program did not, and still should:
 1. Acknowledge schedule pressures that make the start of IOT&E in August 2017 unrealistic and adjust the program schedule to reflect the start of IOT&E no earlier than late CY18.
 2. The Department should carefully consider whether committing to a “block buy” is prudent given the state of maturity of the program, as well as whether the block buy is consistent with a “fly before you buy” approach to defense acquisition and the requirements of title 10 U.S. Code.
 3. Plan and program for additional Block 3F software builds and follow-on testing to address deficiencies currently documented from Blocks 2B and 3i, deficiencies discovered during Block 3F developmental testing, and during IOT&E, prior to the first Block 4 software release planned for 2020.
 4. Ensure the testing of Block 3F weapons prior to the start of IOT&E leads to a full characterization of fire-control performance using the fully integrated mission systems capability to engage and kill targets.
 5. Provide the funding and accelerate contract actions to procure and install the full set of upgrades recommended by DOT&E in 2012, correct stimulation problems, and fix all of the tools so the USRL can operate efficiently before Block 3F mission data load development begins.
 6. Complete the planned testing detailed in the DOT&E-approved USRL mission data optimization operational test plan and amendment. Although some
testing was completed, the program should ensure all operational Block 3i MDLs are tested per the approved test plan.
7. Along with the Navy and Marine Corps, conduct an actual operational test of the F-35B onboard an L-class ship before conducting a combat deployment with the F-35B. This test should have the full Air Combat Element (ACE) onboard, include ordnance employment and the full use of mission systems, and should be equipped with the production-representative support equipment.
8. Develop a solution to address the modification and retrofit schedule delays for production-representative operational test aircraft for IOT&E. These aircraft must be similar to, if not from, the Lot 9 production line.
9. Develop an end-to-end ALIS test venue that is production representative of all ALIS components. Although the program has developed the ORE, only limited testing has occurred.

FY16 Recommendations.

1. The program should complete all necessary Block 3F baseline test points. If the program uses test data from previous testing or added complex test points to sign off some of these test points, the program must ensure the data are applicable and provide sufficient statistical confidence prior to deleting any underlying build-up test points.

2. In light of the fact that the program is unable to correct all open deficiencies prior to IOT&E, the program should assess and mitigate the cumulative effects of the many remaining SDD deficiencies on F-35 effectiveness and suitability, especially those deficiencies that, in combination or alone, may cause operational mission failures during IOT&E or in combat, prior to finalizing and fielding Block 3F. The program will need to add test points to troubleshoot and address deficiencies that are currently not resolved.

3. The program should consider developing another full version of Block 3F software to deliver to flight test in order to address more known deficiencies.
4. The program should ensure adequate resources remain available (personnel, labs, flight test aircraft) through the completion of IOT&E to develop, test, and verify corrections to deficiencies identified during flight testing.

5. The program should address the deficiency of excessive F-35C vertical oscillations during catapult launches within SDD to ensure catapult operations can be conducted safely during IOT&E and during operational carrier deployments.

6. The Program Office must immediately fund and expedite the contracting actions for the necessary hardware and software modifications to provide the necessary and adequate Block 3F mission data development capabilities for the USRL, including an adequate number of additional radio frequency signal generator channels and the other required hardware and software tools.

7. The program should address the JOTT-identified shortfalls in the USRL that prevent the lab from reacting to new threats and reprogramming mission data files consistent with the standards routinely achieved on legacy aircraft.

8. The program should correct deficiencies that are preventing completion of all of the TEMP-required Block 3F Weapons Delivery Accuracy (WDA) events and ensure the events are completed prior to finishing SDD.

9. The program should ensure Block 3F is delivered with capability to engage moving targets, such as that provided by the GBU-49, or other bombs that do not require lead-laser guidance.

10. The program should complete additional testing and analysis needed to determine the risk of pilots being harmed by the Transparency Removal System (which shatters the canopy first, allowing the seat and pilot to leave the aircraft) during ejections in other than ideal, stable conditions (such as after battle damage or during out-of-control situations). The program should complete these tests as soon as possible, with the new equipment, including the Gen III Lite helmet in a variety of off-nominal conditions, so that the Services can better assess risk associated with ejections under these “off-nominal” conditions.

11. The program needs to conduct an assessment to determine the extent to which the results of further durability testing with BH-1, the F-35B durability test article, are representative of production aircraft and, if necessary, procure another test article for the third life testing.

12. The Navy and the Program Office should investigate alternatives for determining the operational impact of an engine removal and install while conducting carrier air wing operations at sea.

13. The Navy and Marine Corps should conduct an analysis, such as an operational logistics footprint study, which simulates flight deck and hangar bay spotting (aircraft placement) with a full ACE onboard, using data from the DT-III ship trials to determine what the impact of an engine removal and installation would be on integrated ship and ACE operations with a full ACE onboard.

14. The program and the Navy should investigate if the heavy power module container should be redesigned for better usability at sea.

15. The program and the Navy should investigate potential options to improve ship-based communications bandwidth dedicated to ALIS connectivity off-ship, such as increasing the priority of ALIS transmissions, or reserving low-use times of the day for handling large volumes of ALIS message traffic.

16. The Navy should investigate any efficient, multi-use opportunities for F-35 support equipment (SE) such as using legacy SE on the F-35 or F-35 SE on legacy aircraft.

17. The Navy should investigate options for increasing the number of wall power outlets in CVN hangar bays to help facilitate simultaneous maintenance on multiple F-35Cs, or the ability to interconnect multiple pieces of support equipment from a single outlet to permit simultaneous operations.
Executive Summary

In FY16, the Defense Information Systems Agency’s (DISA) development of Global Command and Control System – Joint (GCCS-J) focused on three elements of the system: Global v6.0, Agile Client Release 7 v5.1.0.1, and Joint Operation Planning and Execution System (JOPES) v4.2.0.4.

Global v6.0 and Agile Client Release 7 v5.1.0.1 represent the first phase of development to replace the full capabilities of the currently fielded Global v4.3 Update 1 Emergency Release 1.

JOPES v4.2.0.4 supports migration to 64-bit applications, Public Key Infrastructure implementation on web servers, and security enhancements.

Global

The Joint Interoperability Test Command (JITC) conducted a Cooperative Vulnerability and Penetration Assessment (CVPA) and Adversarial Assessment (AA) on Global v4.3 Update 1 Emergency Release 1 at U.S. Pacific Command (USPACOM), Camp H.M. Smith, Hawaii, from December 2015 through January 2016. During this CVPA and AA, JITC verified and assisted in the correction and mitigation of vulnerabilities discovered during previous assessments and improved the system’s cybersecurity posture as deployed at USPACOM Headquarters. However, GCCS-J remains vulnerable to cyber exploitation by an adversary with limited-to-moderate cyber capabilities.

JITC conducted the Global v6.0 and Agile Client Release 7 v5.1.0.1 operational assessment (OA) at U.S. Central Command, MacDill AFB, Florida, and U.S. Strategic Command, Offutt AFB, Nebraska, from August 2 – 9, 2016.

JITC evaluated 18 of 22 capability areas delivered in this initial Global v6.0 and Agile Client Release 7 v5.1.0.1. Users successfully completed the majority of mission tasks in all delivered capability areas. However, users identified significant defects in six capability areas.

Global v6.0 and Agile Client Release 7 v5.1.0.1 are not suitable for all users. More than half of Global users (6 of 11) believe these systems cannot support real-world combat operations due to performance problems and capability gaps. The remaining users indicated that the systems need updates to be suitable.

JITC will conduct an AA, once the program manager fields Global v6.0 and Agile Client Release 7 v5.1.0.1.

DOT&E will evaluate Global v6.0 and Agile Client Release 7 v5.1.0.1 effectiveness and suitability, once the program manager delivers a more complete set of capabilities. The OA was adequate to evaluate initial system capabilities.

JOPES

JITC conducted the JOPES v4.2.0.4 operational test from September 28 through October 14, 2016.

JOPES v4.2.0.4 is operationally effective for all Services except the Air Force. JOPES v4.2.0.4 users successfully created operational plans and force requirements; sourced, updated, and validated force requirements; and completed scheduling and movement of forces. Air Force Deliberate and Crisis Action Planning and Execution Segments (DCAPES) users were unable to source Combatant Command force requirements due to a JOPES v4.2.0.4 to DCAPES interface defect. All other Service Force Providers and JOPES users were able to successfully source force requirements.

JOPES v4.2.0.4 is operationally suitable. Users found JOPES v4.2.0.4 performance and usability comparable to the currently fielded version. JOPES v4.2.0.4 met the availability threshold of 99.7 percent.

JOPES v4.2.0.4 survivability is undetermined. JITC initiated the JOPES v4.2.0.4 CVPA in April 2015, but the discovery of system defects prevented completion. JITC plans to complete the CVPA and conduct an AA on the fielded version of JOPES v4.2.0.4.

System

GCCS-J consists of hardware, software (both commercial off-the-shelf and government off-the-shelf), procedures, standards, and interfaces that provide an integrated, near real-time picture of the battlespace that is necessary.
to conduct joint and multi-national operations. Its client/server architecture uses open systems standards and government-developed military planning software. Global and JOPES are two of the baseline systems that comprise the operational environment of GCCS-J.

Global (Force Protection, Situational Awareness, and Intelligence applications)
- Global v4.3 Update 1 Emergency Release 1 is the currently fielded version. DISA developed Global v4.3 Update 1 to implement high-priority intelligence mission updates to the Theater Ballistic Missile correlation systems, Joint Targeting Toolbox, and Modernized Integrated Database. Emergency Release 1 resolved an operational deficiency discovered in the fielded Global v4.3 Update 1 software and included some of the improvements originally planned for the canceled Global v5.0.
- Global v6.0 and Agile Client Release 7 v5.1.0.1 represent the first phase of a development plan to replace the full capabilities of Global v4.3 Update 1 Emergency Release 1. Global v6.0 will provide back-end services, databases, and system administration functions. Agile Client Release 7 v5.1.0.1 (Agile Client core services and the Agile Client plug-in) provides visualization and presentation of GCCS-J mission applications and functionality to the user.

JOPES (Force Employment, Projection, Planning, and Deployment/Redeployment applications)
- JOPES v4.2.0.3 Emergency Release 4 is the currently fielded version. DISA developed JOPES v4.2.0.3 Emergency Release 4 to implement Global Force Management capabilities. This release added Force Tracking Number and Deployment Order information to the system, as well as an ability to identify and query operationally relevant plans. DISA also corrected seven critical deficiencies.
- JOPES v4.2.0.4 supports migration to 64-bit applications, Public Key Infrastructure implementation on web servers, security enhancements, and resolves 25 problem reports. While this release does not introduce new user capabilities, the changes affect all critical mission areas and external interfaces.

Mission
- Joint Commanders utilize the GCCS-J to accomplish command and control.

Global
- Commanders use Global to:
 - Link the National Command Authority to the Joint Task Force, Component Commanders, and Service-unique systems at lower levels of command
 - Process, correlate, and display geographic track information integrated with available intelligence and environmental information to provide the user a fused battlespace picture
 - Provide Integrated Imagery and Intelligence capabilities (e.g., battlespace views and other relevant intelligence) into the common operational picture and allow commanders to manage and produce target data using the Joint Tactical Terminal
- Provide a missile warning and tracking capability
- Air Operations Centers use Global to:
 - Build the air picture portion of the common operational picture and maintain its accuracy
 - Correlate or merge raw track data from multiple sources
 - Associate raw Electronics Intelligence data with track data
 - Perform targeting operations

JOPES
- Commanders use JOPES to:
 - Translate policy decisions into operations plans that meet U.S. requirements to employ military forces
 - Support force deployment, redeployment, retrograde, and re-posturing
 - Conduct contingency and crisis action planning

Major Contractors
- Government Integrator: DISA
- Software Developers:
 - Northrop Grumman – Arlington, Virginia
 - Leidos – Arlington, Virginia
 - Pragmatics – Arlington, Virginia

Activity

Global
- JITC conducted a CVPA and AA on GCCS-J v4.3 Update 1 Emergency Release 1 at USPACOM, Camp H.M. Smith, Hawaii, from December 2015 through January 2016.
- JITC conducted the Global v6.0 and Agile Client Release 7 v5.1.0.1 OA at U.S. Central Command, MacDill AFB, Florida, and U.S. Strategic Command, Offutt AFB, Nebraska, from August 2 – 9, 2016, in accordance with a DOT&E-approved policy that did not require a DOT&E-approved test plan.

JOPES
- JITC conducted the JOPES v4.2.0.4 operational test from September 28 through October 14, 2016, in accordance with a DOT&E-approved policy that did not require a DOT&E-approved test plan. U.S. Africa Command, Kelly Barracks, Germany; U.S. European Command, Patch Barracks, Germany; USPACOM, Camp H.M. Smith, Hawaii; Combatant Command components; and Force Providers participated in the operational test.
Assessment

Global

- During the Global v4.3 Update 1 Emergency Release 1 CVPA and AA, JITC verified and assisted in the correction and mitigation of vulnerabilities discovered during previous assessments and improved the system’s cybersecurity posture as deployed at USPACOM Headquarters. However, GCCS-J remains vulnerable to cyber exploitation by an adversary with limited-to-moderate cyber capabilities.
- JITC evaluated 18 of 22 capability areas delivered in this initial Global v6.0 and Agile Client Release 7 v5.1.0.1. Users successfully completed the majority of mission tasks in all delivered capability areas. However, users identified significant defects affecting six capability areas:
 - Manage Common Operational Picture. Poor Agile Client Release 7 v5.1.0.1 performance under an operationally realistic track load restricts Combatant Command situational awareness. Users experienced Agile Client Release 7 v5.1.0.1 freezes, requiring a manual restart, under an operationally realistic track load (55,000 tracks). To complete testing, users applied database filters on the Global v6.0 server to limit tracks sent to Agile Client (less than 10,000 tracks). With filters applied, Agile Client performance was acceptable, and users successfully completed mission tasks.
 - Manage Track Data. Users lost previously created bookmarks, plug-in downloads, and filter templates due to Agile Client Release 7 v5.1.0.1 freezes and experienced excessive downtime regaining access or recreating them.
 - Manage Intelligence Data. Users could not associate an image to a joint desired point of impact target in Global v6.0, which could lead to an analyst associating the wrong image or coordinates for a mission folder.
 - Support Battle Damage Assessment. Users were unable to delete associations between targets and target records in Global v6.0. To maintain target record accuracy, users regularly refine intelligence data and break associations with out of date records.
 - Support Missile Defense. Users were unable to view raw data reports for missile tracks because Global v6.0 does not interface with the Integrated Broadcast System. Global v6.0 currently receives missile reports using the Common Operational Picture Synchronization Tools interface. Users rely on these reports in the currently fielded Global v4.3 Update 1.
 - Reconstruct Historical Events. The Agile Client Release 7 v5.1.0.1 does not have the ability to record missile events as they occur or replay them as needed. Users rely on this capability in the currently fielded Global v4.3 Update 1.
 - Global v6.0 and Agile Client Release 7 v5.1.0.1 are not suitable for all users. More than half of Global users (6 of 11) believe the systems cannot support real-world combat operations due to performance problems and capability gaps. The remaining users indicated that the systems need updates to be suitable.

- Users felt Global v6.0 and Release 7 v5.1.0.1 online training did not provide necessary knowledge to conduct mission tasks.
- JITC will conduct an AA once the program manager fields Global v6.0 and Agile Client Release 7 v5.1.0.1.
- DOT&E will evaluate Global v6.0 and Agile Client Release 7 v5.1.0.1 effectiveness and suitability once the program manager delivers a more complete set of capabilities. The OA was adequate to evaluate initial system capabilities.

JOPES

- JOPES v4.2.0.4 is operationally effective for all Services except the Air Force. JOPES v4.2.0.4 users successfully created operational plans and force requirements; sourced, updated, and validated force requirements; and completed scheduling and movement of forces. Air Force DCAPES users were unable to source Combatant Command force requirements due to a JOPES v4.2.0.4 to DCAPES interface defect. The interface defect significantly affects the Air Force, which relies on DCAPES for sourcing force requirements. All other Service Force Providers and JOPES users were able to successfully source force requirements.
- JOPES v4.2.0.4 is operationally suitable. Users found JOPES v4.2.0.4 performance and usability comparable to the currently fielded version. JOPES v4.2.0.4 met the availability threshold of 99.7 percent. System administrators successfully installed and configured the system using the available documentation.
- JOPES v4.2.0.4 survivability is undetermined. JITC initiated the JOPES v4.2.0.4 CVPA in April 2015, but the discovery of system defects prevented completion. JITC plans to complete the CVPA and conduct an AA on the fielded version of JOPES v4.2.0.4.

Recommendations

- Status of Previous Recommendations. DISA has addressed one of the two previous FY15 recommendations. However, DISA still needs to conduct cybersecurity testing of JOPES v4.2.0.3 Emergency Release 4 (or later) in an operational environment to assess protect, detect, react, and restore capabilities.
- FY16 Recommendations. DISA should:
 1. Develop and field mitigations for the discovered vulnerabilities to all Global v4.3 Update 1 Emergency Release 1 locations and verify that the vulnerabilities have been corrected.
 2. Correct Global v6.0 and Agile Client Release 7 v5.1.0.1 deficiencies discovered during the OA.
 3. Correct the DCAPES interface defect and conduct regression testing prior to fielding JOPES v4.2.0.4.
 5. Complete the CVPA and conduct an AA on the fielded version of JOPES v4.2.0.2.
Executive Summary

- Although the Joint Information Environment (JIE) is not a program of record, numerous programs, including but not limited to the Joint Regional Security Stack (JRSS), are directly associated with JIE, are expending significant and substantial resources, and are meant to execute critical missions. To date, the Defense Information Systems Agency (DISA), Joint Interoperability Test Command (JITC), and Services have not conducted rigorous and comprehensive operational testing of any of the programs associated with JIE.
- The JIE Test and Evaluation Working Group, supported by DOT&E, the DOD Chief Information Officer (CIO), U.S. Cyber Command, and the Joint Staff J6 is developing a JIE test and evaluation strategy to assess the maturity of JIE capabilities through a series of annual operational assessments and an overarching operational test and evaluation, starting in July 2017.
- JIE efforts continue to lack an overarching systems integration process or program executive organization to manage cost, drive schedule, and monitor performance factors.
- DISA and the Services are pursuing a non-traditional acquisition approach for the JRSS that has led to early Army and Air Force fielding decisions uninformed by rigorous and comprehensive operational tests, despite the results of developmental tests and limited-in-scope operational assessments indicating JRSS users are not able to provide effective network security. Given the preeminent role that JRSS, once fielded, necessarily plays in securing the Department’s networks, this early fielding of JRSS under circumstances in which users seem unable to employ it to secure their networks may unnecessarily jeopardize the security of critical DOD networks and systems.
- DOT&E and JITC planned for an operational assessment in December 2016 on the JRSSs fielded by the Air Force, but in late November 2016 the Air Force elected to postpone the assessment because of known problems with JRSS technology, training, and enterprise management and operator procedures, which severely limit the current cybersecurity effectiveness of the already fielded JRSS installations. Specifically, the 24th Air Force Commander was concerned that DOT&E might issue a report that reflected poorly on JRSS.
- In response to the DOT&E memos on JIE/JRSS signed in August and September 2016, the DOD CIO agreed that an
IOT&E event for JRSS will take place in May 2017, but this date will likely be revised based on the Air Force deferral of testing.

Capability and Attributes

- In August 2012, the Joint Chiefs of Staff (JCS) approved the JIE as a secure environment, comprised of shared information technology (IT) infrastructure, enterprise services, and single security architecture.
- JIE consists of multiple subordinate programs, projects, and initiatives managed by DISA and the Services.
- The DOD CIO has prioritized areas of modernization of the DOD Information Network (DODIN) for DOD components to implement as the foundation for JIE. The DOD CIO’s areas of modernization include the following:
 - Optical carrier upgrades and Multi-Protocol Label Switching (MPLS)
 - JRSS, the Joint Management System for JRSS, and Cyber Situational Awareness Capabilities
 - The Computing Environment, which includes Commercial Cloud, Cloud Access Points, and milCloud
 - The Mission Partner Environment-Information System, for coalition/partner information sharing, and the Mission Partner Gateways
 - Mobility for unclassified and classified capabilities
- The JCS envision JIE as a shared information technology construct for DOD to reduce costs, improve and standardize physical infrastructure, increase the use of enterprise services, improve IT effectiveness, and centralize the management of network security. The Joint Staff specifies the following enabling characteristics for JIE capability:
 - Transition to centralized data storage
 - Rapid delivery of integrated enterprise services (such as email and collaboration)
- Real-time cybersecurity awareness
- Scalability and flexibility to provide new services
- Use of common standards and operational techniques
- Transition to a single security architecture
- The DOD CIO, DISA, and Services plan to achieve the JIE goals via the following interrelated initiatives:
 - Consolidate applications and data into the cloud or into centralized regional or global data centers that are not segregated by military Service.
 - Establish enterprise operation centers to centralize network management and defense.
 - Upgrade the network infrastructure to include MPLS routers and optical transport upgrades, which enhances network resiliency and bandwidth capacity, and improves security.
 - Implement JRSS architecture and other security constructs as part of a single security architecture. This will reduce the number of access points to the DODIN, standardize identity and access management, and enable centralized defensive cyber operations.
- JIE is not a program of record and does not have a traditional milestone decision authority, program executive organization, and project management structure that would normally be responsible for the cost, schedule, and performance of a program. Moreover, an Operational Test Agency has not conducted independent operational testing required of a traditional acquisition program of record.
- The DOD CIO generally leads JIE efforts with support from the JIE Executive Committee (EXCOM) – chaired by the DOD CIO, U.S. Cyber Command, and Joint Staff J6 – which provides JIE direction, objectives, and limited accountability. DISA is the principal integrator for JIE services and testing.

Activity

- DISA and the Services continued implementation of key JIE enabling capabilities in the United States and in the European theater with the establishment of additional JRSS and MPLS capabilities.
 - JITC conducted an assessment of the JRSS version 1.0 with a Red Team to evaluate Army JRSS operations in December 2015 and published a test report in April 2016.
 - JITC conducted lab-based JRSS developmental testing and operational rehearsals during 2016.
 - In August 2016, the Air Force conducted an evaluation of JRSS with the objective of informing an Air Force JRSS operational trial period entry decision in September 2016. The Air Force decided to migrate three sites behind JRSS for operational trials, starting in October 2016, with plans to accelerate migration efforts in January 2017.

- In August and September 2016, DOT&E published three JIE/JRSS memos to the Services recommending that they conduct operational testing to ensure that the fielding decision authorities have full understanding of the capabilities and limitations that JRSS will provide before deciding to migrate to JRSS and depend upon it to protect their networks.
- DOT&E and JITC planned for an operational assessment in December 2016 on the JRSSs fielded by the Air Force, but in late November 2016 the Air Force elected to postpone the assessment because of known problems with JRSS technology, training, and enterprise management and operator procedures, which severely limit the current cybersecurity effectiveness of the already fielded JRSS installations. Specifically, the 24th Air Force Commander was concerned that DOT&E might issue a report that reflected poorly on JRSS.
- In response to the DOT&E memos on JIE/JRSS signed in August and September 2016, the DOD CIO issued a memo
in September 2016 agreeing that an IOT&E event for JRSS will take place in May 2017, but this date will likely be revised based on the Air Force deferral of testing. The DOD CIO memo also said that final JRSS migrations will not occur until operational testing satisfies the Military Services’ requirements.

- The IOT&E event planned for May 2017 will inform Air Force leadership decisions to fully decommission legacy capabilities. Until full decommissioning occurs, it would be relatively easy to switch from JRSS back to legacy capabilities, if the Air Force chose to do so.
- The JIE Test and Evaluation Working Group, supported by DOT&E, the DOD CIO, U.S. Cyber Command, and the Joint Staff J6 is developing a JIE test and evaluation strategy.
- In August 2016, U.S. Cyber Command initiated an effort to develop a strategic direction for leveraging JRSS capabilities in support of their secure, operate, and defend the DODIN mission.

Assessment

- Although JIE is not a program of record, numerous programs, including but not limited to JRSS, are directly associated with JIE, are expending significant and substantial resources, and are meant to execute critical missions. To date, DISA, JITC, and the Services have not conducted rigorous and comprehensive operational testing of any of the programs associated with JIE.
- DISA and the Services are pursuing a non-traditional acquisition approach for the JRSS that has led to early Army and Air Force fielding decisions uninformed by rigorous and comprehensive operational tests, despite the results of developmental tests and limited-in-scope operational assessments indicating JRSS users are not able to provide effective network security. Given the preeminent role that JRSS, once fielded, necessarily plays in securing the Department’s networks, this early fielding of JRSS under circumstances in which users seem unable to employ it to secure their networks may unnecessarily jeopardize the security of critical DOD networks and systems.
- Acquiring and deploying JRSS without operational testing significantly increases risks to the missions and forces which rely on the affected networks. The limited early test data reported by JITC in April 2016 shows that JRSS capabilities are immature, lacking a stable configuration, and that operator training is incomplete and insufficient. Of most concern is JITC’s finding that key JRSS cybersecurity functions are not mission capable.
- Testers identified over three dozen deficiencies, including many scored as Category 1 Emergency and Category 1 Urgent priority problems.
 - Substandard JRSS capability performance areas included system scalability; reliable connectivity to JRSS components over the network; the absence of standardized tactics, techniques, and procedures; and inadequate operator proficiency, training, and documentation.
 - These problems affected critical capabilities and adversely affect the operational effectiveness of defensive cybersecurity operations.
 - Network traffic during the test traversed in series on both the JRSS and the existing Air Force gateway security stacks, with each stack potentially interfering with and affecting the function of the other security stack.
- Despite these test results, the Air Force plans to start fielding the JRSS to 14 bases between October and December 2016; the Army and Navy are also fielding, but at a slower pace.
- Fielding JRSS prior to verifying through rigorous operational testing and regressions that the technology works, and that JRSS operators and enterprise network defenders have effective procedures and training required to operate the system, risks degrading DOD network operations and security, potentially leaving networks vulnerable to undetected adversarial actions during and after JRSS migration.
- The DOD CIO is the lead for JIE governance; however, the JIE effort continues to lack an overarching systems integration process or program executive organization to manage cost, drive schedule, and monitor performance factors.

Recommendations

- Status of Previous Recommendations. The DOD CIO and Director of DISA have not addressed the previous FY14 and FY15 recommendations to:
 1. Develop adequate test schedules and plans for anticipated future test events in FY17 and beyond.
 2. Establish an overarching JIE program executive to integrate the system efforts and oversee cost, schedule, and performance.
 3. Manage all key JIE capabilities/components with empowered, responsible program managers.
 4. Continue to develop an overarching test strategy that encompasses not only the upcoming testing of JIE, but also defines the key issues and concepts to be tested in subsequent tests and assessments.
- FY16 Recommendations.
 1. To prevent unnecessary risks to DOD networks, the Services should stop fielding JRSS capabilities until the results of a comprehensive IOT&E show that the enterprise and Service operators are capable of using the JRSS to provide effective network security.
 2. Poor program governance and acquisition oversight for JRSS is jeopardizing the security of DOD networks; to address these issues Congress should consider directing the DOD to make JRSS an Acquisition Category IAM program of record.
 3. Complete, adopt, and implement the JIE test and evaluation strategy.
 4. Conduct a JRSS IOT&E to evaluate JRSS capabilities, operator training, and enterprise processes and use the results to inform JRSS capability-related fielding and migration decisions.
JWARN is a joint automated CBRN warning, reporting, and analysis software tool. It resides on joint and Service command and control systems including the Global Command and Control System (GCCS) – Army, GCCS – Joint, GCCS – Maritime, Command and Control Personal Computer/Joint Tactical Common Workstation, the Army’s BCCS server, and on stand-alone computers.

JWARN software automates the NATO CBRN warning and reporting process to increase the speed and accuracy of information.

The JWARN Increment 2 program will consist of four phases named after the Requirements Definition Package (RDP) that
identifies the capabilities to be delivered. Each RDP will have multiple software capability drops.
- RDP-1 will update the JWARN Web Application code to comply with recent changes to the NATO Allied Technical Publication 45 and add planning tools previously included in Increment 1 versions of JWARN
- RDP-2 is envisioned to integrate RDP-1 capabilities into the Service command and control system/architectures
- RDP-3 is envisioned to provide capability to integrate with networked sensors
- RDP-4 is anticipated to support modernization and emerging capabilities

Mission
A unit equipped with JWARN provides analysis of potential or actual CBRN hazard areas based on operational scenarios or sensor and observer reports, identifies affected units and operating areas, and transmits warning reports to support commanders’ force protection and operational decisions.

Major Contractor
Northrop Grumman Mission Systems – Orlando, Florida

Activity
- In FY16, the Joint Program Office for Information Systems (JPM-IS) delivered the first two capability drops for JWARN Increment 2 RDP 1 referred to as JWA-E. JWA-E operates as a Web Application on the Army’s BCCS server and stand-alone CPOF computers. The software is compliant with the NATO Allied Technical Publication – 45 version E.
- JPM-IS conducted developmental testing on JWA-E, at its integration laboratory in San Diego, California, from October 2015 to April 2016.
- The Army Research Laboratory Survivability/Lethality Directorate conducted a Cooperative Vulnerability and Penetration Assessment of the JWA-E from February 1 – 5, 2016, at Aberdeen Proving Ground, Maryland.
- OTC conducted the JWARN Increment 2 Initial Operational Test – Army 1 (IOT-A1) of the first capability drop during an Armored Brigade Combat Team field training exercise from June 9 – 16, 2016, at Fort Hood, Texas.
- During IOT-A1, OTC conducted an excursion to demonstrate JWARN Increment 2 joint interoperability and backward compatibility by exchanging JWARN messages using a JWA-E operating on a battalion-level CPOF computer in Fort Hood, with the GCCS – Maritime-hosted JWARN Increment 1 operated by Navy personnel in southern California.
- OTC was unable to execute IOT-A1 in accordance with the DOT&E-approved test plan due to network configuration problems and lack of an operational GCCS – Army hosted JWARN Increment 1 system.
- The Army Threat Systems Management Office conducted a cybersecurity Adversarial Assessment during the IOT-A1 that focused on portraying the insider, near-sider, and outsider threats.

Assessment
- JWA-E software is backward compatible and interoperable with JWARN Increment 1 software.
- In a degraded communications environment, JWA-E on stand-alone CPOF computers provides battalion CBRN operators an automated capability to create, edit, and correlate CBRN reports to support battalion leadership.
- When not connected to the BCCS server, operators of the JWA-E on CPOF computers could not see CBRN hazard plots and unit locations on an operational map at the same time to identify units at risk to send CBRN warning reports.
- JWA-E planning tools provide CBRN operators with the capability to generate basic hazard prediction plots to support the development of courses of action in the event of a CBRN incident.
- The JWA-E has cybersecurity vulnerabilities that need to be corrected prior to fielding.

Recommendations
- Status of Previous Recommendations. The JWARN Program Office and the Navy addressed all FY15 recommendations.
- FY16 Recommendations. The JPM-IS should:
 1. Work with the appropriate Army Program Offices to identify a solution so that operators using JWA-E stand-alone can see CBRN hazard plots in relation to operational unit locations to enable timely identification and warning of units at risk.
 2. Correct the cybersecurity vulnerabilities discovered during IOT-A1 prior to fielding.
Key Management Infrastructure (KMI) Increment 2

Executive Summary

- DOT&E published its Key Management Infrastructure (KMI) Spiral 2, Spin 1 Limited User Test (LUT) and LUT Retest Report in late October 2015 that found KMI to be operationally effective with some problems and not operationally suitable. The Joint Interoperability Test Command (JITC) conducted a LUT of KMI Spiral 2, Spin 1 capabilities; however, JITC could not fully assess KMI cybersecurity until an Adversarial Assessment is completed in Spin 2.
- Based on the LUT Retest results, USD(AT&L) authorized a limited DOD-wide KMI Spiral 2, Spin 1 fielding in December 2015 with guidance to the National Security Agency (NSA) and the Services to implement mitigation plans to resolve suitability problems discovered during the LUTs.
- Users are satisfied with Spiral 2, Spin 1 capabilities, performance, and system stability. Database management problems during the LUT and LUT Retest affected software downloading. Site failover, Advanced Extremely High Frequency keying, Card Loader, F-22, KMI tokens, benign fill (a cryptographic key wrapped within an encryption key known only between the device wrapping it and the end unit), and existing Spiral 1 functions worked. During the LUT Retest, some problems remained with Mobile User Objective System (MUOS), Secure Software Provisioning, and the Host-Based Security System (HBSS) and its supporting servers.
- In February 2016, the KMI Program Management Office (PMO) changed the Full Deployment Decision (FDD) estimate from April 2017 to February 2018, thus triggering a Significant Change.
- The KMI PMO and JITC conducted a government-led Developmental Test and Evaluation-2 (DT&E-2) of Spiral 2, Spin 2 capabilities in July 2016. Major problems with Spin 2 capabilities required the KMI PMO to delay the DT&E-2 regression event from August to October 2016.
- JITC conducted no KMI operational testing in FY16 due to Spin 2 schedule delays.

System

- KMI will replace the legacy Electronic Key Management System (EKMS) to provide a means for securely ordering, generating, producing, distributing, managing, and auditing cryptographic products (e.g., encryption keys, cryptographic applications, and account management).
- KMI consists of core nodes that provide web operations at sites operated by the NSA, as well as individual client nodes distributed globally, to enable secure key and software provisioning services for the DOD, the Intelligence Community, and other Federal agencies.
- KMI combines substantial custom software and hardware development with commercial off-the-shelf computer components. The custom hardware includes an Advanced Key Processor for autonomous cryptographic key generation and a Type 1 user token for role-based user authentication. The commercial off-the-shelf components include a client host computer with monitor and peripherals, High Assurance Internet Protocol Encryptor (KG-250), printer, and barcode scanner.

Mission

- Combatant Commands, Services, DOD agencies, other Federal agencies, coalition partners, and allies will use KMI to provide secure and interoperable cryptographic key generation, distribution, and management capabilities to support mission-critical systems, the DOD Information Networks, and initiatives such as Cryptographic Modernization.
- Service members will use KMI cryptographic products and services to enable security services (confidentiality, non-repudiation, authentication, and source authentication) for diverse systems such as Identification Friend or Foe, GPS, Advanced Extremely High Frequency Satellite System, and Warfighter Information Network – Tactical.

Major Contractors

- Leidos – Columbia, Maryland (Spiral 2 Prime)
- General Dynamics Information Assurance Division – Needham, Massachusetts (Spiral 1 Prime)
- L3 Communications – Camden, New Jersey
FY16 DOD PROGRAMS

Activity

- JITC conducted a LUT in April 2015 of Spiral 2, Spin 1 capabilities in accordance with a DOT&E-approved test plan, and a LUT Retest in July 2015 to verify fixes to problems discovered during the LUT. JITC published its LUT Retest Report in October 2015. The LUT examined new KMI capabilities for supporting F-22 Raptor, Advanced Extremely High Frequency and MUOS satellite systems, benign fill (a cryptographic key wrapped within an encryption key known only between the device wrapping it and the end unit), Secure Terminal Equipment enhanced cryptographic cards, new KMI tokens, HBSS and ePolicy Orchestrator server, site failover, and EKMS and KMI client workstation transition procedures.
- DOT&E published its KMI Spiral 2, Spin 1 LUT and LUT Retest Report in late October 2015 that found KMI to be operationally effective with some problems and not operationally suitable. JITC conducted a LUT of KMI Spiral 2, Spin 1 capabilities; however, JITC could not fully assess KMI cybersecurity until an Adversarial Assessment is completed in Spin 2.
- Based on the LUT Retest results, USD(AT&L) authorized a limited DOD-wide KMI Spiral 2, Spin 1 fielding in December 2015 with guidance to the NSA and the Services to implement mitigation plans to resolve suitability problems discovered during the LUTs.
- In February 2016, the KMI PMO changed the original FDD estimate to February 2018, thus triggering a Significant Change.
- The KMI PMO and JITC conducted the government-led DT&E-2 of Spiral 2, Spin 2 capabilities in July 2016. Major problems with Spin 2 capabilities required the KMI PMO to delay the DT&E-2 regression event from August to October 2016.
- JITC conducted no KMI operational testing in FY16, due to Spin 2 schedule delays.
- The DOD Chief Information Officer convened KMI Executive Management Reviews that focused attention on significant problems with the KMI schedule, developer staffing, and shared test infrastructure resources. The KMI PMO, Service stakeholders, and test community met to help orchestrate the integrated Spin 2 and Spin 3 schedule that accounts for KMI development, KMI and EKMS sustainment, shared test infrastructure usage, and operational risk reduction with EKMS message server hardware and software upgrades.
- All Services are fielding KMI Spiral 2, Spin 1; account transitions as of October 2016 are:
 - Army - 97
 - Air Force - 192
 - Navy - 235
 - Defense Agencies - 25
- The Army will accelerate account transitions with the Spin 2 fielding decision projected for late 2017. The Army will be unable to transition all of its Non-secure Internet Protocol Router Network key managers to KMI before December 2017 and will need EKMS extended into 2018. The Navy indicated that some afloat accounts will not transition until 2018 and will need EKMS to accomplish the transition process.

Assessment

- Users are satisfied with Spiral 2, Spin 1 capabilities, performance, and system stability. Functionality improved for the LUT Retest, but some suitability problems remain unresolved.
- KMI Spiral 2, Spin 2 developmental and operational testing is at least 12 months behind schedule, and the program is at risk of not meeting its new FDD in 2018.
- Service users completed the Spin 2 DT&E-2 in July 2016, identifying numerous critical problems, some of which are process and procedural problems related to EKMS-to-KMI transition. PMO regression testing of the fixes to those defects began in September 2016.
- The KMI Spiral 2, Spin 2 test schedule is aggressive and high-risk based on the time required to integrate and test the previous spin’s capabilities.
- The KMI PMO delayed the Spiral 2, Spin 2 Operational Assessment due to software integration problems found in the Spin 2 DT&E-2. Additionally, the KMI PMO experienced significant Spin 3 integration and developmental testing delays. Because of these delays, the KMI PMO can only develop, test, and field three of four spins prior to the desired EKMS end-of-life date in 2017.
- Problems observed in previous developmental testing, if not corrected during system development, could adversely affect the system’s effectiveness, suitability, or survivability during the KMI Spiral 2, Spin 2 LUT, which the KMI PMO delayed from January 2017 to June 2017.
- The KMI training system (separate from the operational KMI system) has connection and updating problems that effect KMI courses and student training.

Recommendations

- Status of Previous Recommendations. The KMI PMO satisfactorily addressed one of the FY14 and FY15 recommendations. The following remain unresolved:
 1. Improve rigor of the KMI software development and regression process to identify and resolve problems before entering operational test events.
 2. Allot adequate schedule time to support test preparation, regression, post-test data analysis, verification of corrections, and reporting to support future deployment and fielding decisions.
 3. Verify increased KMI token reliability through a combination of laboratory and operational testing with
automated data collection from system logs for accurate reliability and usage analysis.

4. Demonstrate a regular maintenance release schedule and resolve the backlog of deficiencies.

5. Ensure that appropriate transition and funding plans are in place to continue development and support fielding efforts beyond FY17 target dates, since all Services will have some accounts that will not transition until FY18.

6. Resolve HBSS version management and re-verification process problems that obstruct autonomous operations.

7. Improve and institutionalize rigorous configuration management, software and security update processes, and version controls to properly sustain KMI.

8. Ensure adequate engineering, second echelon, system administrators, database managers, and NSA/Service Help Desk and transition staffs are available to support surge fielding and long-term KMI sustainment.

• FY16 Recommendations. The KMI PMO should:

1. Ensure shared test resources are synchronized with competing NSA program and sustainment efforts, and continue to maintain an overall schedule that is executable with coordinated Service support and participation.

2. Prepare to extend the EKMS end-of-life, as the Navy has indicated that some afloat accounts will not transition until 2018 and will need EKMS to accomplish the transition process. The Army will be unable to transition all of its Non-secure Internet Protocol Router Network key managers to KMI before December 2017 and will need EKMS extended into 2018.

3. Improve KMI training system connectivity, software updating, and sustainment support for KMI courses and student training.
Executive Summary

- The Next Generation Diagnostic System (NGDS) is a polymerase chain reaction analytical instrument. The Services intend NGDS to provide clinical diagnostic capability to diagnose biological warfare agent (BWA)-related illness and environment sample analysis to identify the presence of BWA in the operational environment.
- BioFire Defense, Limited Liability Corporation (LLC), the major contractor, is conducting Food and Drug Administration (FDA)-approved clinical trials on the NGDS hardware, software, the consumable assay, and analytical methods for BWA-related diseases to support FDA clearance of NGDS for clinical use.
- The Army Test and Evaluation Command conducted an operational assessment of the NGDS May 18 – 27, 2016, at Camp Bullis, Texas.
- Based on an analysis of operational assessment data, deployable medical units equipped with NGDS can analyze clinical specimens and provide timely and accurate information to support medical diagnosis, treatment, and force health protection decisions.
- The NGDS demonstrated 98 percent mission reliability and 98 percent operational availability during the operational assessment.

System

- The NGDS Increment 1 Deployable Component is the FilmArray 2.0 commercial off-the-shelf liquid sample polymerase chain reaction analytical instrument with automated sample preparation.
- The NGDS and the Warrior Panel for biological warfare agent identification will be FDA-cleared for diagnostics use on clinical specimen types.
- The system includes a ruggedized computer, software, ruggedized transport case, optical handheld barcode scanner, optical mouse, power and communication cables, pouch loading module, consumable assays, and an operator’s manual with sample protocols.
- The Services intend to use the NGDS Increment 1 Deployable Component in existing microbiology laboratories equipped with common laboratory support equipment such as Class II Bio Safety Cabinet, refrigerator, freezer, level work surfaces, line power sources, lighting, and appropriately trained laboratory personnel and units.

Mission

- Trained clinical laboratory personnel equipped with the NGDS Increment 1 Deployable Component will identify BWAs and infectious diseases in clinical specimens (e.g., blood, sputum, nasopharyngeal swabs) to support medical provider’s clinical diagnosis and treatment decisions.
- Trained laboratory personnel equipped with NGDS will identify BWAs in environmental samples to confirm a potential BWA incident and support Force Health Protection decision making.

Major Contractor

BioFire Defense, LLC – Salt Lake City, Utah

Activity

- BioFire Defense conducted FDA-approved pre-clinical trial testing of the NGDS during FY15. It is currently conducting FDA-approved clinical trials on the NGDS hardware, software, the consumable assay, and analytical methods for BWA-related diseases. The FDA will use clinical trial data to determine if the system should be cleared for diagnostic use.
- The NGDS program conducted the following developmental and logistics testing between July 2015 and August 2016:
 - Electromagnetic compatibility testing and Military Standard 810 environmental testing from July to August 2015
- Synthetic DNA material testing to validate its use as a stimulant for operational testing from February to March 2016
- Cooperative Vulnerability and Penetration Assessment cybersecurity testing in April 2016
- Logistics Demonstration in May 2016
- Military Standard 810 follow-on testing in May 2016
- DOT&E approved the NGDS Increment 1 Deployable Component operational assessment plan on May 9, 2016.
- The Army Test and Evaluation Command conducted the operational assessment May 18 – 27, 2016, at Camp Bullis, Texas, in accordance with the DOT&E-approved Test and Evaluation Master Plan and operational test plan.

Assessment
- Based on an analysis of operational assessment data, deployable medical units equipped with NGDS can analyze clinical specimens and provide timely and accurate information to support medical diagnosis, treatment, and force health protection decisions.
- Clinical laboratory personnel are able to prepare and analyze a clinical sample in an average of 68 minutes and correctly report diagnostic results for multiple agents at the same time.
- The NGDS automated sample preparation and analysis process reduces operator sample preparation tasks and minimizes the opportunity for error.
- The NGDS infectious disease diagnostic capability will enable laboratory personnel to maintain proficiency that can be applied should a BWA incident occur.
- The NGDS demonstrated 98 percent mission reliability and 98 percent operational availability during the operational assessment.
- NGDS has cybersecurity vulnerabilities that need to be corrected and re-tested prior to fielding.
- FDA clearance for medical use must be obtained for the NGDS and Warrior Panel prior to fielding.

Recommendations
- Status of Previous Recommendations. There are no previous recommendations for this program.
- FY16 Recommendation.
 1. The program manager should correct cybersecurity vulnerabilities prior to the IOT&E and fielding.
Public Key Infrastructure (PKI) Increment 2

Executive Summary
- DOT&E published a memo in late December 2015 noting that poor Secret Internet Protocol Router Network (SIPRNET) token reliability continues to impede operational missions requiring secure access to SIPRNET, and recommended that the Public Key Infrastructure (PKI) Program Management Office (PMO) address the problem. The PMO recently began issuing two new token types to the field, and deploying to a small set of users an automated token data logging capability to evaluate and improve token reliability. The new token types include a redesigned token from the existing manufacturer and a second source token type based on Common Access Card technology.
- In late February 2016, the PKI Program Manager changed his Full Deployment Decision (FDD) estimate to April 2018, triggering a Significant Change. The program manager subsequently changed his FDD estimate to July 2018.
- The Joint Interoperability Test Command (JITC) conducted a Limited User Test (LUT) of PKI Token Management System (TMS) releases 4.1, 4.2, and 4.3 from July 18 to August 11, 2016. New capabilities under test included Very Important Person (VIP) and Traditional Group, Role-based, and User-Identity tokens; recovery of past encryption keys to a token; TMS monitoring; and automatic failover between the primary and alternate sites. Test results revealed that DOD PKI Increment 2 Spiral 3 Releases 4.1, 4.2, and 4.3 are operationally effective, operationally suitable except for the Advanced Reporting System (ARS), and interoperable. Cybersecurity analyses are ongoing.
- JITC and National Security Agency (NSA) cybersecurity teams conducted a cooperative cybersecurity assessment of TMS in July 2016.
- DOT&E published the PKI TMS Release 4 LUT report in November 2016.
- A persistent cyber opposing force identified a significant PKI vulnerability during a DOT&E-sponsored cybersecurity assessment, and DOT&E is preparing a classified finding memo that will recommend remediations.
- The NSA PKI PMO delayed deployment of the Defense Information Systems Agency (DISA) Integration Lab (DIL), a key aspect of the program’s late 2014 post-critical change way ahead. Without the DIL, the PKI Program Manager will continue to deploy potentially immature capabilities directly to the production environment, creating operational risk for users.
- JITC plans to conduct a Spiral 3 FOT&E from April to May 2017.

System
- DOD PKI provides for the generation, production, distribution, control, revocation, recovery, and tracking of public key certificates and their corresponding private keys. DOD PKI supports the secure flow of information across the DOD Information Networks as well as secure local storage of information.
- The SIPRNET TMS’s primary mission is to issue tokens and certificates to end users. The private keys are encoded on the token, which is a smartcard embedded with a microchip.
 - The NSA manages TMS with operational support from DISA, which hosts the infrastructure and provides PK enabling support for DOD. TMS uses the Defense Manpower Data Center’s Secure Defense Enrollment Eligibility Reporting System (DEERS) as the authoritative data source for personnel data and provides capabilities for token formatting, user registration, token enrollment, token personal identification number reset, token suspension and restoration, token revocation, and encryption private key escrow and recovery.
 - TMS uses commercial off-the-shelf (COTS) hardware and software components using Linux-based operating
systems hosted at the DISA Enterprise Service Centers in Mechanicsburg, Pennsylvania, and Oklahoma City, Oklahoma.

- The NSA deployed PKI Increment 1 on the Non-secure Internet Protocol Router Network (NIPRNET) with access control provided through Common Access Cards. The NSA is developing and deploying PKI Increment 2 in four spirals on SIPRNET and NIPRNET. The NSA deployed Spirals 1 and 2, while Spirals 3 and 4 will deliver TMS enhancements, inventory logistics tools, an enterprise-level alternate token issuance and management system (for system administrators) on the NIPRNET, and an enterprise-level non-person entity (NPE) (e.g., workstations, routers, and web servers) for certificate issuance and system management.

Mission
- Commanders at all levels will use DOD PKI to provide authenticated identity management via personal identification number-protected Common Access Cards or SIPRNET tokens to enable DOD members, coalition partners, and others to access restricted websites, enroll in online services, and encrypt and digitally sign email.
- Military operators, communities of interest, and other authorized users will use DOD PKI to securely access, process, store, transport, and use information, applications, and networks.
- Military network operators will use NPE certificates for workstations, web servers, and mobile devices to create secure network domains, which will facilitate intrusion protection and detection.

Major Contractors
- General Dynamics Mission Systems – Dedham, Massachusetts (Prime)
- 90Meter – Newport Beach, California
- SafeNet Assured Technologies – Abington, Maryland

Activity
- The PKI PMO conducted multiple government-led TMS 4.1 and 4.2 developmental tests to resolve software deficiencies from December 2015 to June 2016.
- DOT&E published a memo in late December 2015 noting that poor SIPRNET token reliability continues to impede operational missions requiring secure access to SIPRNET, and recommended that the PKI PMO address the problem. The PMO recently began issuing two new token types to the field, and deploying to a small set of users an automated token data logging capability to evaluate and improve token reliability. The new token types include a redesigned token from the existing manufacturer (SafeNet) and a second source token type based on Common Access Card technology.
- DOT&E approved the PKI Spiral 3 Test and Evaluation Master Plan (TEMP) Addendum in February 2016.
- The PKI PMO and JITC began writing the Spiral 4 TEMP Addendum in late February 2016. Spiral 4 will support the NIPRNET Enterprise Alternate Token System (NEATS), NPE, and Secure Channel Protocol (SCP) 03 development efforts and testing.
- In late February 2016, the PKI Program Manager changed his FDD to April 2018, triggering a Significant Change. The program manager subsequently changed his FDD estimate to July 2018.
- JITC conducted a LUT of PKI TMS Releases 4.1, 4.2, and 4.3 from July to August 2016. These releases provide TMS privileged users with enhanced management and reporting functions, TMS system administrators with improved monitoring tools, and SIPRNET token end-users with more flexible ways to securely share information through group and role-based tokens. Additionally, TMS 4.3 implements an automated failover capability. TMS 4.1, 4.2, and 4.3 capabilities include:
 - TMS VIP, Traditional Group, role-based, and user-identity token processes and enrollments with encryption, identity, and signing certificate attributes.
 - ARS uses the Pentaho COTS tool to create data-object templates and ad hoc reports.
 - The Nagios COTS tool that provides the DISA system administrators with a system health and monitoring dashboard view of TMS performance metrics, server services, connections, storage, and data files.
- JITC and NSA cybersecurity teams conducted a cooperative cybersecurity assessment of TMS in July 2016.
- DOT&E published the PKI TMS Release 4 LUT report in November 2016.
- A persistent cyber opposing force identified a significant PKI vulnerability during a DOT&E-sponsored cybersecurity assessment, and DOT&E is preparing a classified finding memo that will recommend remediations.
- The PKI PMO plans to conduct developmental testing of TMS release 5.0 and 6.0, starting in December 2016.
- JITC plans to conduct the Spiral 3 FOT&E from April to May 2017.

Assessment
- Developmental testing conducted on the production environment in February, March, and June 2016 resulted in the identification and fixing of 11 high-priority software deficiencies. Four high-priority deficiencies were found during the four-week LUT, not including several high-risk cybersecurity vulnerabilities, which are still being evaluated. PMO delays in software delivery and the need for successive regression testing in the production environment have overtaxed the user community and further compressed the already aggressive Increment 2 schedule.
FY16 DOD PROGRAMS

- Developmental test planning and process improvements since the critical change included an event-driven test approach, regression testing prior to proceeding to operational testing, and involving more Service and agency users in test events.
- From April to June 2016, there were ongoing TMS performance/latency problems impeding certificate issuance and revocation that affected PKI mission operations for all Services and agencies. The PKI PMO reduced those latency and failover problems with the hardware refresh completed at the DISA hosting sites in late June 2016.
- Services and agencies continue to experience SIPRNET token shortages that are a direct result of poor logistics supply planning, high token failure rates, and delays in provisioning and long lead time for new token types. Moreover, a surge of expiring SIPRNET PKI certificates (certificates expire after 3 years) require users to renew their certificates, which involves the time-consuming process of interfacing with a Registration Authority (RA).
- Significant PKI SIPRNET token shortages forced Services to institute rationing for FY16.
- PKI TMS release 4.1, 4.2, and 4.3 LUT assessment:
 - JITC examined TMS VIP, group, and role token processes and enrollments with encryption, identity, and signing certificate attributes. The TMS 4.1 and 4.2 functionality is working properly and provides operational benefits such as methods for encouraging adoption of secure authentication, encryption, and non-repudiation.
 - A new bulk revocation capability has been tested successfully by many Services and agencies, driven by the large stock of returned tokens that require proper handling for termination or reuse.
 - The PMO placed two new token types into circulation to address the poor reliability of existing tokens. JITC has not operationally tested these new token types, and the Services have yet to equip most sites with the required middleware version to utilize the new tokens. The Services are reporting few problems with the new token types.
 - JITC evaluated ARS, which uses the Pentaho tool to create data-object templates and ad hoc reports. The Service RAs stated that ARS is a powerful tool, but they need a tailored instruction guide and more training to better understand how to use ARS.
 - JITC tested TMS release 4.3 and the Nagios COTS tool that provides DISA system administrators with a system health and monitoring dashboard view of TMS performance metrics, server services, connections, storage, and data files. TMS 4.3 implements an automated failover capability, which worked during the LUT. The Nagios tool will be more useful once it is tailored to meet the system administrators’ specific system monitoring needs with specific thresholds for generating alerts that are tuned and once the system administrators define the techniques, tactics, and procedures for the tool.
- PKI LUT findings revealed that DOD PKI Increment 2 Spiral 3 Release 4.1, 4.2, and 4.3 are operationally effective, operationally suitable except for ARS, and interoperable. Security data analyses are ongoing.
- PKI LUT results indicated the following:
 - Some users experienced intermittent connectivity problems when enrolling tokens; however, the extent to which this affects their productivity is unclear.
 - TMS granted excessive privileges to Trusted Agents, allowing them to inadvertently renew a certificate rather than simply resetting a Personal Identification Number.
 - While running a report using ARS, one RA discovered approximately 500 active certificates that TMS should have revoked when the RA terminated the associated tokens. This should not have occurred because TMS should automatically revoke certificates when an RA terminates a token.
 - Users liked VIP group tokens, which allow staff members of senior officials to better handle official encrypted email traffic.
 - PKI successfully demonstrated automatic failover between the primary and alternate sites during the LUT after JITC-identified system configuration problems were corrected.
 - DISA system administrators successfully used the Nagios monitoring capability to troubleshoot TMS failures; however, the volume and types of alerts need adjustment to allow system administrators to respond when required.
 - ARS provides a much needed token reporting capability; however, users require more focused training. Default templates for standard data objects (e.g., number of tokens issued per month by Service) would be beneficial to users who do not have access to focused training.
- DISA system administrators identified a TMS-related configuration management problem that prevented automatic failover and complete data replication between the two Enterprise Service Center hosting sites. During the LUT, RAs attempting to run ARS reports during the LUT discovered that the report data were incomplete. The PKI PMO found the root cause and fixed the problem during the test, and subsequent failovers and data replication between sites functioned properly.
- The NSA PKI PMO and DISA delayed deployment of the DIL, a key aspect of the program’s late 2014 post-critical change way ahead, due to lack of DIL effort prioritization, funding shortfalls, and hardware procurement problems. Without the DIL, the PKI Program Manager will continue to deploy potentially immature capabilities directly to the production environment, creating operational risk to users.

Recommendations

- Status of Previous Recommendations. The PKI PMO satisfactorily addressed one of four previous FY15 recommendations. The following remain:
 1. Develop the Spiral 4 TEMP Addendum in accordance with the redefined PKI Increment 2 Acquisition Strategy to
prepare stakeholders for the remaining deliveries, resource commitments, and T&E goals.

2. Define and validate sustainment requirements for PKI Spiral 4 capabilities.

3. Provide periodic reports of token reliability, failure rates, and root cause analyses.

- FY16 Recommendations. The PKI PMO should:

1. Establish an operationally representative DIL to properly examine TMS and NPE capabilities in a test environment containing realistic token data, interfaces to user test laboratories, and an email server to improve test adequacy prior to deploying capabilities to production.

2. Implement the cybersecurity mitigating actions from the classified memo.
Executive Summary
- The Army Test and Evaluation Command (ATEC) conducted a Multi-Service Operational Test and Evaluation (MOT&E) of Theater Medical Information Program – Joint (TMIP-J) Increment 2 Release 3 (I2R3) that included a cybersecurity Adversarial Assessment from August 13 – 21, 2015. The Air Force Operational Test and Evaluation Center, Marine Corps Operational Test and Evaluation Activity, United States Army Medical Department Board, Air Force Medical Evaluation Support Activity (AFMESA), Marine Corps Tactical Systems Support Activity (MCTSSA), and the Joint Interoperability Test Command (JITC) all participated in the MOT&E. The MOT&E was adequate to assess operational effectiveness, operational suitability, and survivability for the Army, Air Force, and Marine Corps.
- The Commander, Operational Test Force (COTF) conducted Navy OT&E in a test environment aboard the USS Carter Hall (LSD 50) while in port at Joint Expeditionary Base, Little Creek, Virginia, and while underway in the nearby Virginia Capes operating area. COTF completed the mission-oriented functional OT&E from November 6 through December 18, 2015, and conducted cybersecurity testing from January 11 – 15, 2016. The Navy OT&E was adequate to support an assessment of survivability, but not adequate to support a full assessment of operational effectiveness or operational suitability for the Navy.
- TMIP-J I2R3 is not operationally effective for the Army, Air Force, and Marine Corps. DOT&E could not fully assess the operational effectiveness of TMIP-J I2R3 for the Navy. The Army and Air Force identified problems in the core mission areas of Health Care Documentation and Medical Command and Control that may pose risks to patient safety and prevent the system from being operationally effective for the Army, Air Force, and Marine Corps until these problems are corrected or mitigated. The Navy collected insufficient samples to determine whether problems reported by other Services in the mission area of Medical Command and Control exist in the Navy implementation of TMIP-J. TMIP-J I2R3 is effective for the Navy in the core Business Process Support mission areas of Health Care Documentation and Preventative Medicine. The three joint interfaces evaluated met the accuracy and timeliness thresholds for interoperability, and network operations were effective for all Services.
- TMIP-J I2R3 is operationally suitable for the Army, Air Force, and Marine Corps. DOT&E could not assess operational suitability for the Navy because positive mission performance results conflicted with negative user opinions from the small number of Navy test participants and the Navy failed to conduct follow-up interviews with TMIP-J I2R3 users during the Navy portion of the MOT&E.
- TMIP-J I2R3 is not survivable. During the Army, Air Force, and Marine Corps MOT&E, cybersecurity test aggressors penetrated the system and gained access to the test patient health records as an insider/nearsider to the system. During the Navy OT&E, cybersecurity test aggressors identified no vulnerabilities with the TMIP-J I2R3 software itself, but did identify vulnerabilities in the Consolidated Afloat Network and Enterprise Services (CANES) system. The CANES vulnerabilities enabled the cyber aggressors to penetrate TMIP-J workstations.

System
- TMIP-J is a Major Automated Information System that integrates software from sustaining base medical applications into a multi-Service system for use by deployed forces. Examples of integrated applications include the theater versions of the Armed Forces Health Longitudinal Technology Application, Composite Health Care System, and Defense Medical Logistics Standard Support.
- TMIP-J provides the following medical capabilities:
 - Electronic Health Records
 - Medical command and control
 - Medical logistics
 - Patient movement and tracking
 - Patient data to populate the Theater Medical Data Store (theater database) and the Clinical Data Repository (Continental U.S. database)
- The Services provide their own infrastructure (networks and communications) and computer hardware to host the TMIP-J software.
- TMIP-J consists of two increments. The Program Executive Office fielded Increment 1 in 2003 and is developing Increment 2 in multiple releases with the following fielding dates:
FY16 DOD PROGRAMS

- Increment 2 Release 3 was the system under test during 2015 and is the final TMIP-J release.
- The Program Executive Office initiated the Joint Operational Medicine Information Systems (JOMIS) program in FY15. This program will replace portions of TMIP-J.

Mission
- Combatant Commanders, Joint Task Force commanders, and their medical staff equipped with TMIP-J can make informed and timely decisions about planning and delivering health care services in the theater.
- Military health care providers equipped with TMIP-J can electronically document medical care provided to deployed forces to support continuity of medical care from the theater to the sustaining base.

Major Contractors
- SAIC – Falls Church, Virginia
- Northrop Grumman – Chantilly, Virginia
- Akimeka LLC, Kihei – Maui, Hawaii

Activity
- ATEC conducted an MOT&E of TMIP-J I2R3 in accordance with the DOT&E-approved test plan from August 13 – 21, 2015. The Air Force Operational Test and Evaluation Center, Marine Corps Operational Test and Evaluation Activity, United States Army Medical Department Board, AFMESA, MCTSSA, and JITC also participated in the MOT&E. ATEC tested the Army and Air Force components of TMIP-J I2R3 at AFMESA, Fort Detrick, Maryland, and Marine Corps portions of TMIP-J I2R3 at MCTSSA, Camp Pendleton, California.
- In August 2015, the Threat System Management Office conducted a cybersecurity Adversarial Assessment for the Army, Air Force, and Marine Corps portions of TMIP-J I2R3 in conjunction with the MOT&E.
- COTF conducted Navy OT&E with the DOT&E-approved test plan, in a test environment aboard the USS Carter Hall (LSD 50) while in port at Joint Expeditionary Base, Little Creek, Virginia, and while underway in the nearby Virginia Capes operating area. COTF conducted mission-oriented functional OT&E from November 6 through December 18, 2015, and cybersecurity testing from January 11 – 15, 2016.
- Following the MOT&E, the JOMIS Program Manager developed TMIP-J I2R3 Service Pack 1 (SP1) to correct discovered problems.
- In June 2016, the JOMIS Program Manager completed a TMIP-J I2R3 SP1 developmental test and evaluation regression test and released the system software to the Services for implementation.
- In August 2016, the JOMIS Program Manager completed installation of TMIP-J I2R3 SP1 on the TMIP-J baseline system at Joint Task Force Bravo, Soto Cano Air Base, Honduras.

Assessment
- The MOT&E and the Navy OT&E were adequate to assess survivability for all Services. The MOT&E was adequate to assess operational effectiveness and operational suitability for the Army, Air Force, and Marine Corps, but the Navy OT&E was not adequate to fully assess operational effectiveness and operational suitability.
- TMIP-J I2R3 is not operationally effective for the Army, Air Force, and Marine Corps. DOT&E could not fully assess the operational effectiveness of TMIP-J I2R3 for the Navy.
- There were no deficiencies in the core mission areas of Patient Movement and Medical Logistics. However the August 2015 MOT&E identified problems in the core mission areas of Health Care Documentation and Medical Command and Control that may pose risks to patient safety and prevent the system from being operationally effective until these problems are corrected or mitigated. Specifically, users must manually enter the same patient data into multiple systems as no automated interface between them exists, increasing the potential for errors or incomplete medical data in one or more systems. The Navy collected insufficient samples to determine whether problems reported by other Services in the mission area of Medical Command and Control exist in the Navy implementation of TMIP-J. TMIP-J I2R3 is effective for the Navy in the Business Process Support mission areas of Health Care Documentation and Preventative Medicine.
- The three joint interfaces evaluated met the accuracy and timeliness thresholds for interoperability.
- Network operations were effective for all Services, although there were initial difficulties in establishing tactical communications through supporting Service networks. During the first seven days of the MOT&E, the Army, Air Force, and Marine Corps were unable to exchange data over their very small aperture terminal satellite systems. Service technicians isolated the problem to a network device that was altering packets because of an incomplete security certification. They solved the problem by obtaining a new certification. Satellite communications problems aboard the USS Carter Hall delayed testing. Once the Navy fixed these problems, TMIP-J I2R3 data successfully traversed the network while both dockside and underway to perform the mission.
- TMIP-J I2R3 is operationally suitable for the Army, Air Force, and Marine Corps. DOT&E could not evaluate operational suitability for the Navy because positive mission performance
results conflicted with negative user opinions from the small number of Navy test participants, and the Navy failed to conduct follow-up interviews with TMIP-J I2R3 users during the Navy OT&E.

- System administrators responded favorably to survey questions regarding administration of the system.
- User opinion surveys from the Army, Air Force, and Marine Corps confirmed that their respondents liked the system and found it easy to use. They reported a mean score of 70 on the System Usability Scale (SUS), indicating acceptable usability. However, Navy user opinion surveys resulted in a very low mean score of 38, indicating unacceptable usability for medical users aboard the USS Carter Hall.
- Army, Air Force, and Marine Corps test participants indicated that the TMIP-J I2R3 supporting documentation was helpful and that they were satisfied with help desk performance. The Army and Air Force did not adequately capture reliability and availability data during the test event, but there were no indications that the system is not reliable or available. The Marine Corps reported an availability of 99.8 percent, which exceeded the 99 percent availability threshold with confidence. The Navy reported 243 hours of system operating time, with no observed failures resulting in an 80 percent lower confidence bound of 151 hours Mean Time Between Operational Mission Failures due to software and 100 percent availability.

- TMIP-J I2R3 is not survivable. During Army, Air Force, and Marine Corps OT&E, cybersecurity test aggressors penetrated the system and gained access to the test patient health records as an insider/nearsider to the system. During the Navy OT&E, cybersecurity test aggressors identified no vulnerabilities with the TMIP-J I2R3 software itself, but did identify vulnerabilities in the CANES hosting platform for TMIP-J I2R3. The CANES vulnerabilities enabled cyber aggressors to penetrate TMIP-J workstations.

Recommendations

- Status of Previous Recommendations. There were no previous recommendations.
- FY16 Recommendations.
 1. The Program Executive Officer of Defense Healthcare Management Systems, in coordination with the Services and the Defense Health Agency Functional Advisory Council, should address problems discovered during the MOT&E.
 2. The Operational Test Agencies should retest TMIP-J I2R3 capabilities in a representative operational environment with operational users to support a final fielding of TMIP-J I2R3.
 3. The Navy should ensure all instances of CANES, on all platforms, are properly patched and configured for cybersecurity and routinely conduct cybersecurity testing of CANES installations.