Notes

Unless otherwise indicated, all years referred to in this study are federal fiscal years (which run from October 1 to September 30 and are designated by the calendar year in which they end). In addition, all costs apply to fiscal years and are expressed in fiscal year 2017 dollars of total obligational authority, and all growth rates are measured in real terms (with the adjustments for inflation made using the Congressional Budget Office’s projection of the gross domestic product price index).

Numbers in the text and tables may not sum to totals because of rounding.

Supplemental information for this analysis is available on CBO’s website (www.cbo.gov/publication/51535).
Contents

Summary

1

What Are the Major Elements of the Military’s Force Structure? 1
What Does This Analysis Indicate About the Budgetary Effects of Altering the Force Structure? 4
How Is This Report Organized? 5

Introduction

7

What Is Force Structure? 8

BOX 1-1. DEFINING SUPPORT UNITS 10
How CBO Estimated the Costs of the Military’s Force Structure 10
How Changes in the Force Structure Would Affect Costs 12

BOX 1-2. WHY CBO PROJECTS THAT MOST OF DOD’S OPERATION AND SUPPORT COSTS ARE PROPORTIONAL TO THE FORCE STRUCTURE 14
Costs Not Included in This Analysis 15
Guide to Reading This Report 16

Department of the Army

17

Overview 17

BOX 2-1. COMMAND LEVELS OF U.S. GROUND FORCES 19
Major Elements of the Force Structure

Army Armored Brigade Combat Teams 22
Army Stryker Brigade Combat Teams 28
Army Infantry Brigade Combat Teams 32
Other Department of the Army Units and Activities 36

Special Topics

Integration of the Army’s Active and Reserve Components 38
Manning Levels, Readiness, and Deployability of Units 40
Deployment Times and Rotation Ratios 42
Department of the Navy

Overview

Major Elements of the Force Structure
 Aircraft Carriers
 Surface Combatants
 Attack Submarines
 Amphibious Ships
 Marine Corps Infantry Battalions
 Other Department of the Navy Units and Activities

Special Topics
 Integration of the Navy and Marine Corps
 Forcible-Entry Capability
 Naval Shipborne Aviation
 Marine Corps Aviation

Department of the Air Force

Overview

Major Elements of the Force Structure
 Air Force Tactical Aviation Squadrons
 Air Force Bomber Squadrons
 Air Force Airlift Squadrons
 Air Force Air Refueling Squadrons
 Air Force Unmanned Air System Squadrons
 Other Department of the Air Force Units and Activities

Special Topic
 The U.S. Military’s Strike Capability

Defensewide Activities

Overview

Major Elements of the Force Structure
 Special Operations
 Defense Health Program
 Other Defensewide Units and Activities
 Nuclear Forces
 Missile Defense
CONTENTS

A

Size, Costs, and Number of U.S. Forces 123

B

Reconciling CBO's and DoD's Five-Year Tallies of Funding and Personnel 127

C

Military Operations and Planning Scenarios Referred to in This Report 135

List of Tables and Figures 139

About This Document 140
In fiscal year 2015, the Department of Defense (DoD) spent a total of roughly $390 billion on operation and support (O&S) of military units. The O&S budget covers the costs associated with the day-to-day running of units. Those costs include pay and benefits for military personnel, compensation for most civilian employees, health care costs for military and civilian personnel, and the daily expenses of operating a unit, such as equipment maintenance, training, support contractors, and so on. The O&S budget makes up about two-thirds of DoD’s total “base” budget, which is the defense budget excluding additional funds provided specifically for wartime operations. (The rest of DoD’s base budget is spent on acquiring weapon systems and constructing buildings and other infrastructure.)

The size and complexity of the U.S. armed forces can make it difficult to determine how the O&S budget is distributed among units. In this report, the Congressional Budget Office analyzes the structure and cost of the military from the perspective of major combat units, such as Army brigades, Navy aircraft carrier strike groups, Marine Corps task forces, and Air Force squadrons. CBO allocates most of the O&S budget and DoD’s total number of military personnel among major combat units—and their associated support units and overhead activities—to provide a clearer picture of the size and cost of the major elements of the military’s force structure. Such information can help policymakers evaluate proposals to change the structure or budget of the armed forces.

CBO’s analysis indicates that major combat units by themselves account for roughly one-quarter of DoD’s operation and support costs and contain about one-third of DoD’s military personnel. Most of the rest of DoD’s O&S costs and military personnel are associated either with units that support major combat units (which CBO considers part of the cost of maintaining fully supported major combat units) or with overhead activities necessary for manning, equipping, and training combat and support units. In addition, the total operating costs associated with a major combat unit include a share of the costs of “defensewide” activities, such as the Defense Health Program, that provide various forms of administrative support to DoD as a whole.

As an example, by CBO’s calculation, an armored brigade in the Army’s active component has about 4,200 military personnel assigned to it. But that number rises to about 17,450 military personnel if it includes the units that support the armored brigade (by providing transportation and maintenance, for example) and the brigade’s proportional share of overhead activities that support DoD and the Army (such as recruiting, basic training, and administrative support). By itself, such an armored brigade costs $500 million a year to operate, including compensation for its military personnel. Those operating costs rise to about $2,600 million per year if the costs of support units and overhead activities are included (see Summary Table 1). Those patterns are similar for major combat units in the Department of the Navy (which includes the Marine Corps) and the Department of the Air Force.

What Are the Major Elements of the Military’s Force Structure?

Each of DoD’s three military departments provides different kinds of forces. The composition, functions, capabilities, and costs of the departments’ major combat units are often difficult to determine from budget documents and from the various reports that the military provides to the Congress. The critical roles that support units play in making major combat units function effectively are even more difficult to discern, as are the costs of supporting each type of combat unit.

This primer describes how each department is organized into major combat units, what each type of unit does,
Summary Table 1.

Number, Size, and Costs of Selected U.S. Forces

<table>
<thead>
<tr>
<th>Number of Units in 2017</th>
<th>Military Personnel per Unit</th>
<th>Annual Cost per Unit (Millions of 2017 dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Total</td>
</tr>
<tr>
<td>Department of the Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active-Component Armored Brigade Combat Team</td>
<td>9</td>
<td>4,200</td>
</tr>
<tr>
<td>Active-Component Stryker Brigade Combat Team</td>
<td>7</td>
<td>4,440</td>
</tr>
<tr>
<td>Active-Component Infantry Brigade Combat Team</td>
<td>14</td>
<td>4,230</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Carrier</td>
<td>11</td>
<td>3,200</td>
</tr>
<tr>
<td>Carrier Air Wing</td>
<td>10</td>
<td>1,630</td>
</tr>
<tr>
<td>Arleigh Burke Class Destroyer (DDG-51)</td>
<td>66</td>
<td>340</td>
</tr>
<tr>
<td>Attack Submarine</td>
<td>51</td>
<td>190</td>
</tr>
<tr>
<td>Amphibious Ship</td>
<td>33</td>
<td>710</td>
</tr>
<tr>
<td>Active-Component Marine Corps Infantry Battalion</td>
<td>24</td>
<td>1,490</td>
</tr>
<tr>
<td>Department of the Air Force</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-16 Fighter Aircraft Squadron a</td>
<td>45</td>
<td>450</td>
</tr>
<tr>
<td>B-1B Bomber Aircraft Squadron a</td>
<td>4</td>
<td>940</td>
</tr>
<tr>
<td>C-17 Cargo Aircraft Squadron a</td>
<td>14</td>
<td>450</td>
</tr>
<tr>
<td>KC-135 Tanker Aircraft Squadron a</td>
<td>30</td>
<td>610</td>
</tr>
<tr>
<td>MQ-9 “Reaper” Unmanned Air System Squadron a</td>
<td>23</td>
<td>340</td>
</tr>
</tbody>
</table>

Source: Congressional Budget Office, using data from the Department of Defense’s 2017 budget request.

“Direct” personnel and costs are associated with a major combat unit. “Total” personnel and costs also include the “indirect” personnel and costs associated with units that support the major combat unit and the “overhead” personnel and costs associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The personnel and cost numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

a. Notional squadrons of 12 aircraft (actual squadrons vary in size).

how those units have been used in past conflicts, and how much it costs to operate and support those units. DoD also includes a number of smaller organizations that provide services or specialized capabilities to the military as a whole. In this analysis, CBO treats some of those defense-wide costs as part of the cost of a military unit, which means that the total cost to operate and sustain all of a military department’s units is larger than the department’s requested O&S budget (because each department relies on services and activities funded from such defense-wide accounts).

Department of the Army

According to its 2017 budget request, DoD plans to spend an average of about $101 billion per year (in 2017 dollars) over the 2017–2021 period to operate and support Army units. The total O&S cost of those units includes an additional $16 billion per year from defense-wide accounts, CBO estimates.
The main units that the Army provides to the U.S. military are brigade combat teams (BCTs), large formations that officially contain about 4,400 to 4,700 soldiers. Those units come in three major types: armored BCTs, Stryker BCTs, and infantry BCTs. All three types are similar in size; they differ primarily in how many wheeled or tracked vehicles are assigned to them. All BCTs are versatile ground combat units, capable of performing a wide variety of missions, and all rely on many support units assigned to them from higher-level commands. When deployed, a BCT can expect to be supported by almost twice as many personnel in support units as it has in its own unit. BCTs account for over 80 percent of O&S funding for Army units (see Summary Figure 1).

Department of the Navy
According to its 2017 budget request, DoD plans to spend an average of about $95 billion per year over the 2017–2021 period to operate and support Navy and Marine Corps units. The total O&S cost of those units includes an additional $10 billion per year from defensewide accounts, CBO estimates.

The Navy’s primary units are various kinds of battle force ships: aircraft carriers, surface combatants (cruisers, destroyers, and some smaller ships), attack submarines, and amphibious ships. Each type of ship is specialized for particular missions—such as carrying attack aircraft or a task force of marines—and the types differ greatly in size and cost. Battle force ships are relatively self-contained when deployed, although they receive support from some other units, including logistics ships that refuel and rearm them while they are under way, maritime patrol aircraft that scout for them, and minesweeper squadrons that clear their path of sea mines. Of Navy units (as opposed to Marine Corps units), aircraft carriers and their associated air wings account for the largest single share of O&S funding, receiving 21 percent of appropriations for the Department of the Navy’s units (see Summary Figure 2).

The Marine Corps’ main units are Marine air-ground task forces—integrated combinations of ground combat units, air combat units, and support units that are tailored to specific operations (rather than being standardized units, as in the other services). Different kinds of task forces are distinguished primarily by the size of their ground combat forces, from the small Marine expeditionary units carried on Navy amphibious ships up to the large Marine expeditionary forces that engaged in combat operations in Iraq in 1991 and 2003. Marine Corps units account for the largest single share—33 percent—of O&S funding for the Department of the Navy’s units (see Summary Figure 2).

Department of the Air Force
According to its 2017 budget request, DoD plans to spend an average of about $82 billion per year over the 2017–2021 period to operate and support Air Force units. The total O&S cost of those units includes an additional $8 billion per year from defensewide accounts, CBO estimates.

The majority of Air Force units consist of squadrons of different types of fixed-wing aircraft that perform a...
variety of missions: short-range tactical aircraft (for engaging in air-to-air combat with other aircraft or for striking targets on the ground), long-range bombers, airlifters (for transporting cargo and personnel), tankers (for refueling other aircraft in flight), and unmanned air systems (also known as drones). Short-range tactical aircraft account for the largest single share—33 percent—of O&S funding for the Department of the Air Force’s units (see Summary Figure 3).

Defensewide Activities
DoD also includes a number of defensewide organizations, which are not part of a military service, that perform specific functions. Most of those organizations—such as DoD’s military health care system—provide centralized forms of support that assist each of the services. But a few—such as Special Operations Command, which organizes units from the different services’ special-operations forces into an integrated force—provide distinct military capabilities to the nation (as well as generating distinct costs). Together, defensewide organizations and activities account for about $39 billion per year of the O&S funding that DoD requested in its 2017 budget.

What Does This Analysis Indicate About the Budgetary Effects of Altering the Force Structure?
This report breaks down DoD’s total number of military personnel and total operation and support budget and ascribes almost all personnel and O&S costs to major combat units according to three categories:

- Direct personnel and O&S costs—for a major combat unit itself;
- Indirect personnel and O&S costs—for the deployable units that support the major combat unit; and
- Overhead personnel and O&S costs—for the administrative functions within a service or DoD that are necessary to field the major combat unit and its supporting units.

CBO’s numbers are based on information in DoD’s latest five-year budget plan, the Future Years Defense Program for the 2017–2021 period. Thus, to the extent that DoD has overestimated or underestimated the funding needed...
The only O&S costs not divided among major combat units in this analysis are health care costs for current military retirees and their families, because those costs represent a major expense that DoD could not alter in the near term through future policy decisions.

If DoD or lawmakers decided to eliminate a major combat unit from DoD’s plans, the savings might not be as large as CBO’s estimate of the total O&S costs for that type of unit. DoD would achieve savings from the support units associated with a combat unit only if it also eliminated those units. And DoD would achieve savings in overhead functions only if it trimmed those activities to reflect the smaller force. In addition, some overhead activities, such as operating bases, might take several years to cut, which would delay the full savings. For related reasons, if policymakers decided instead to add a major combat unit to the military’s force structure, the costs might not be as large as CBO’s estimate of the O&S costs for that type of unit, at least in the near term.

However, the estimates of O&S costs for combat units presented in this report do not include the costs of developing and acquiring new weapon systems. Thus, if DoD or lawmakers chose to eliminate a major combat unit and stopped purchasing the weapon systems intended to equip that unit, the savings would be larger than CBO’s estimate of the costs to operate and sustain the unit.

Similarly, if policymakers chose to add a major combat unit and to purchase weapon systems to equip that unit, the total additional costs would be larger than CBO’s estimate of the corresponding O&S costs.

How Is This Report Organized?

This primer is designed to be a reference work rather than a linear narrative. Chapter 1 describes CBO’s conceptual approach to analyzing the military’s force structure and costs, and the following three chapters discuss the particular organizational structures and roles of the Departments of the Army, the Navy, and the Air Force. All of a department’s major types of combat unit have their own entries, which discuss the size, cost, function, advantages, disadvantages, and past use of that type of unit. The final chapter includes similar entries for some major defense-wide organizations, such as Special Operations Command and the military’s health care system. Each chapter also focuses on some special topics that are important for understanding the military’s force structure, such as the integration of different types of units or the military’s ability to conduct certain kinds of operations.

The structure of this report means that readers who are interested mainly in learning, for example, about the organization of the Marine Corps or the costs of an Air Force bomber squadron can, after reading Chapter 1, go straight to the relevant section.
For the first time in nearly two decades, the Department of Defense (DoD) has experienced sustained budget cuts in recent years: Annual appropriations (excluding additional appropriations for ongoing military operations) for 2013 through 2016 averaged about 5 percent less, in nominal terms, than the funding in 2012. The possible need to accommodate constraints on DoD’s budget in the future—because of caps on discretionary spending through 2021 enacted in the Budget Control Act of 2011, as amended—raises the question of how best to prioritize the various tasks that the department performs and how best to assess any proposed changes to the force. At the same time, the enormous size and complexity of DoD, the many specialized organizations it includes, the wide array of weapon systems and platforms it operates, and the complexity of its budget documents make the task of understanding how the department operates—and how its budget could be changed—daunting to many observers.

To increase policymakers’ understanding of the choices that the nation faces when considering DoD’s budget, the Congressional Budget Office has prepared this primer on the structure of the armed forces. There are many different ways to approach DoD’s budget, for the purposes of this analysis, CBO treats DoD as an organization that produces, sustains, and supports combat units. The number and type of combat units, as well as the personnel and equipment they contain, are referred to as the force structure. To produce this primer, CBO developed an analytic model of the military’s force structure in which DoD’s costs are viewed as inputs necessary to operate and sustain the force. The advantage of that treatment is that it provides a clear view of the trade-offs that would be involved if policymakers wanted to reduce DoD’s budget through cuts in the force structure—each element of the force structure has a cost associated with it, the costs of different elements can be compared, and it is possible to say how much of the force structure would have to be cut to generate a given amount of savings.

This primer contains entries that describe all of the major elements of the military’s force structure. Those elements include the major combat units that are the traditional backbone of the armed forces (such as armored brigades, aircraft carrier strike groups, and tactical aircraft squadrons). They also include specialized organizations that provide specific capabilities to DoD (such as special-operations forces and missile defense). Each entry for a major element of the force structure provides the following information about that element:

- CBO’s estimates of the number of military personnel and the costs associated with manning, operating, and sustaining a single unit of that type—what DoD refers to as operation and support (O&S) costs;
- The number of such units that DoD has now and whether the department plans to change that number;
- Its intended function;
- Its relative strengths and limitations;
- Its use in past operations; and
- Common measures (when possible) of how many units of that type the United States might need.

The primer also discusses some special topics that are important for understanding how DoD organizes and employs its forces but that are not specific to a single type of unit or do not have direct cost implications. Those discussions, which generally have a different format than the entries for major elements of the force structure, appear in the same chapter as the military service or types of units to which they most closely relate. (For example, the special topic of forcible-entry capability is discussed in the same chapter as Navy amphibious ships and Marine Corps battalions, since those are the forces used for amphibious assaults, the best-known form of forcible-entry operation.)
The primer concludes with three appendixes. The first, which is intended to serve as a quick reference, summarizes the size, costs, and number of each major element of the force structure included in CBO’s analysis. The second shows the relationship between DoD’s total O&S budget, the costs to operate and maintain each major element of the force structure, and the number and types of force structure elements in DoD’s current plans. The third is a brief summary of the military operations and DoD planning scenarios referred to in this report.

What Is Force Structure?
Although DoD has many responsibilities and functions, at the most basic level it is the organization responsible for manning, equipping, and training U.S. military forces.1 The vast majority of DoD’s funding and personnel are assigned to tasks that contribute in some way to producing military forces that are prepared for combat. As such, DoD can be viewed as an organization that converts “inputs” of funding and personnel into “outputs” of combat capability, which are then available to be used as the nation sees fit.2 That combat capability is best described in terms of the number and types of combat units that DoD can generate and sustain—that is, in terms of force structure.

Decisions about force structure strongly affect DoD’s costs, size, and capabilities, so force structure is generally central to any discussion of making large changes to DoD’s budget. Although the department has the ability to make some relatively small changes that do not affect its force structure, such changes usually have much more limited effects than changes in the force structure do. For example, the decision to field 11 aircraft carriers and their associated air wings and escort ships requires DoD to have a large number of military personnel, a large support infrastructure, fairly specific plans for shipbuilding and aircraft procurement, and so forth. When large cuts in DoD’s budget have been made in the past, they have almost always required reductions in the force structure.3

There is no generally agreed-upon way to measure combat capability directly and quantitatively. Force structure is the simplest and least subjective way to describe combat capability, although it has many limitations. The most significant drawback is that the concept of force structure inevitably invites “apples to oranges” comparisons, such as “how many aircraft carriers provide the same combat capability as an armored brigade?” More broadly, although having more combat units generally provides more combat capability, counts of the number of units available to the United States are not very useful if they do not consider the quality of those units. The same issue arises in any comparison of the force structures of different militaries: A U.S. armored brigade may have far more combat power (particularly when combined with its support units) than that of another country.

The full description of every element of the U.S. military’s force structure can be overwhelming. The exact number of units in the military varies with counting methods. As an example, however, the DoD databases that contain units’ reports about their readiness for combat include tens of thousands of units of thousands of different types. Thus, any widely useful description of the U.S. force structure requires some simplification.

For the purposes of this analysis, CBO divided all of DoD’s activities into three broad categories:

- **Major Combat Units.** These are the best known, most visible, and generally most important combat units in DoD’s inventory—such as Army brigade combat teams, Navy warships, and Air Force tactical fighter squadrons. In many instances, they are also the units of greatest interest to policymakers. For that reason, CBO organized this primer primarily as a discussion of major combat units. To show all important elements of the force structure, CBO presented some elements, such as special-operations forces, as if...

1. The actual use of those forces is also DoD’s responsibility. But DoD is organized in such a way that the administrative chain of command responsible for generating forces is largely separate from, and parallel to, the operational chain of command responsible for employing forces. In recent years, budgetary practices have maintained that separation: DoD’s “base” budget largely funds the administrative system for manning, equipping, and training units, whereas additional appropriations have been provided separately to fund ongoing military operations.

2. That role is sometimes described as the “force provider” function, although DoD often uses that term in a more limited sense to refer to some of its subordinate organizations rather than to itself as a whole.

3. For a discussion of ways in which DoD might need to reduce the force structure to meet the spending restrictions of the Budget Control Act of 2011, see Congressional Budget Office, Approaches for Scaling Back the Defense Department’s Budget Plans (March 2013), www.cbo.gov/publication/43997.
they were a single, large major combat unit, although they differ from traditional major combat units in numerous ways.

Support Units. In the U.S. military, major combat units are employed alongside a vast number of units that support their activities in many different ways. In the Army, for example, brigade combat teams generally make up about one-third of the military personnel deployed to a combat theater—the other two-thirds are personnel assigned to units that are responsible for aviation, engineering, intelligence, civil affairs, ordnance, maintenance, transport, or other support services. Those additional units are essential for major combat units to accomplish their missions, but they are generally not the focus of discussions about the U.S. force structure. In this primer, every deployable combat unit in the U.S. inventory that is not classified as a major combat unit is considered a support unit. Across DoD as a whole, as many personnel are assigned to support units as to major combat units. (For a discussion of differences in how DoD and CBO use the term “support unit,” see Box 1-1.)

Administrative/Overhead Organizations. A large proportion of DoD’s military personnel, and almost all of the department’s 800,000 civilian personnel, are not assigned to deployable military units. Instead, they are part of various administrative or overhead organizations that perform key functions necessary for manning, equipping, and training combat and support units. Each military department has large administrative organizations devoted to such functions as recruiting, training, acquisition, maintenance, and medical care; in addition, there are various defensewide organizations that perform administrative or overhead functions for the entire military. In general, policymakers’ main concern with such functions is that they be performed efficiently, so as not to divert more resources than necessary from other activities. In this primer, all nondeployable portions of DoD (including those accounted for as “individuals,” such as trainees and other nondeployable personnel) are included in the administrative/overhead category.

That division into three types of activities allows CBO to further simplify its description of the U.S. force structure. Because some units support major combat units, and because DoD plans for such types of support in a predictable and regular way, the costs of the relevant support units can be considered part of the total cost of a major combat unit. That approach results in a package that CBO refers to as a “fully supported unit”—a major combat unit plus its support units. Similarly, because administrative or overhead activities are designed to help man, equip, and train units, and because DoD also plans for those activities in a predictable and regular way, a prorated amount of administrative/overhead costs can be considered part of the total cost of a fully supported unit.

Dividing DoD’s activities into those three categories also allows for a simple visualization of the department’s structure. Combat units are often described as representing the “tip of the spear” or having a “tooth-to-tail” ratio. Those metaphors capture an important point: A relatively small fraction (about one-third) of DoD’s personnel and budget are dedicated directly to major combat units. Like the metaphorical spear, those major combat units (the spear point) are supported by a large mass of support units and administrative organizations (the shaft of the spear). And just as the shaft is essential to a spear’s function as a weapon, DoD’s support units and administrative organizations are vital to the ability of major combat units to perform their roles.

Another distinction in the U.S. military is between a service’s active component (regular units belonging to the Army, Navy, Marine Corps, or Air Force) and the service’s reserve component (units belonging to the Army Reserve, Army National Guard, Navy Reserve, Marine Corps Reserve, Air Force Reserve, or Air National Guard). The services rely heavily on reserve-component units, which differ from active-component units in various ways, most notably in costs. For those reasons, CBO tried to display active- and reserve-component units separately in this primer whenever it was feasible to do so. However, because of the different way that each service integrates its reserve-component units into its overall structure, CBO was able to provide a meaningful division between active- and reserve-component units only for the Army and the Marine Corps. (The Navy Reserve has almost no units that fit the definition of major combat units used for this analysis, and the Air Force integrates its active- and reserve-component units so tightly that CBO could not readily separate the costs of the two components.)
How CBO Estimated the Costs of the Military’s Force Structure

The force structure model that CBO developed for this analysis is based on DoD’s fiscal year 2017 Future Years Defense Program (FYDP), which the department submitted to the Congress in April 2016 to provide detail for its 2017 budget request. The annual FYDP is a five-year plan that contains detailed information about DoD’s spending plans, distribution of personnel, and force structure for the budget year and the four subsequent years.

CBO’s analysis focuses on operation and support costs, which make up about two-thirds of DoD’s “base” budget—the budget excluding separate appropriations provided to fund ongoing military operations. (The other one-third of that base budget is spent mainly on acquisition of weapon systems and on military construction and family housing.) O&S costs include compensation for military personnel, which is paid from the services’ military personnel accounts. O&S costs also include compensation for most civilian employees, health care costs for military and civilian personnel, and the expenses of running a unit (day-to-day operations, equipment maintenance, training, support contractors, and so on), all of which are paid from the services’ or defensewide operation and maintenance accounts. O&S costs are very closely related to the size of units—for instance, a unit with 10,000 military personnel will have military personnel costs commensurate with that size, and DoD has a limited ability to change those costs, particularly in the near term.
For this analysis, CBO divided O&S costs into three categories: direct, indirect, and overhead costs. Those groupings match the three categories that CBO used for DoD’s units and activities: Direct costs are associated with major combat units, indirect costs with support units, and overhead costs with administrative or overhead organizations. CBO also used the direct, indirect, and overhead categories for the number of military personnel associated with a unit. That breakdown, for both costs and personnel, is shown in the table that accompanies each entry in this primer for a major element of the force structure.

Direct Costs

For most major combat units, the FYDP includes entries that show DoD’s total costs for a unit of that type and the total number of military personnel assigned to that kind of unit. The numbers for direct costs (the costs of a major combat unit itself) and direct personnel (the personnel assigned to the unit itself) are annual averages of the five years of numbers shown in the FYDP. In the case of costs, those averages are in 2017 dollars. Direct costs also include a share of the costs of the Defense Health Program (DHP) that is based on the number and type of military personnel in the major combat unit.

Indirect Costs

To determine which units should be classified as providing support to major combat units for the purposes of this analysis, CBO used a variety of sources, including its past studies, DoD databases, and military doctrine. In general, ground forces (such as those of the Army and Marine Corps) have a fairly direct relationship between combat and support units that can be readily identified and described. With naval and air forces, however, those relationships are much less well defined and are more difficult to characterize. For example, naval and air forces require large numbers of higher-level maintenance units, which may support many different types of combat units. In the absence of details about the actual workload of such maintenance units, CBO made simplifying assumptions about the likely distribution of that workload among different types of combat units. Ground forces are more likely to have maintenance shops assigned to specific units (such as the Marine logistics group that is assigned to each Marine expeditionary force), so fewer simplifying assumptions were necessary.

Once the process of ascribing support units to combat units was finished, each type of major combat unit had a set of associated support units that should reflect the additional units that DoD would probably create or disband if it created or disbanded a major combat unit of that type. With that set of units defined, CBO was able to use information from the FYDP to estimate indirect costs and personnel counts associated with that set of support units in the same way that it estimated direct costs and personnel numbers for major combat units. As with direct costs, CBO included a fraction of the DHP’s costs based on the number and type of military personnel in the set of support units.

Overhead Costs

For administrative or overhead organizations, CBO determined that the majority of those organizations’ workload is essentially dependent on the size of the force—for instance, a larger force requires more recruiters to find more recruits, more trainers to train those recruits, and more doctors to provide medical care. Some workload (such as that of maintenance depots) is driven by the amount of equipment in the force, but the amount of equipment is itself largely tied to the size of the force. Thus, for the majority of each service’s administrative or overhead organizations, CBO assigned prorated fractions of those organizations’ costs and personnel—referred to here as overhead—to the costs and personnel of each fully supported combat unit. For example, if a fully supported combat unit accounts for 2 percent of the personnel that a service devotes to major combat and support units, it is

4. Because the FYDP covers a five-year period and because, in many cases, the number of planned forces changes over that period, CBO calculates costs for a major combat unit by dividing the total five-year constant-dollar cost for that type of unit by the total five-year count of such units. That approach means that the estimate of costs is also an average over time. O&S costs generally rise over the years (because of pay raises, increases in health care costs, and other factors), so the costs that CBO estimates in this analysis are slightly higher than those in the FYDP earlier in the five-year period and slightly lower than those in the FYDP later in the period.

5. In some cases, the set of support units that CBO ascribed to a major combat unit would only approximate the changes that DoD would probably make if it added or eliminated a combat unit. For example, CBO considered an Army corps headquarters to be a type of support unit, but each corps headquarters would be expected to command a large number of brigade combat teams (BCTs). Thus, CBO assigned each BCT a fraction of a corps headquarters as a part of its support units. In practice, however, DoD would not eliminate a fraction of a corps headquarters if it disbanded a BCT; it would probably alter the number of corps headquarters only if it made large changes to the size of the Army.
assumed to require 2 percent of the service’s administrative and overhead organizations to sustain it.

CBO also assigned to each type of fully supported combat unit a prorated fraction of the costs and personnel of defensewide agencies, such as the Defense Finance and Accounting Services agency, which provides payment services to DoD. Finally, as with direct and indirect costs, CBO included a share of the costs of the DHP based on the number and type of military personnel in an administrative or overhead organization.

Other Considerations

Some activities of the individual services or DoD as a whole do not fit easily into that analytic framework. Thus, for each military department, this primer includes an “Other Activities” component, which CBO treats like a major combat unit (because those activities cannot be considered support or overhead for another type of major combat unit). Such activities include a service’s special-operations forces, some of its command-and-control activities, its construction engineers, and so forth.

In a similar fashion, CBO describes separately the costs of defensewide activities that cannot be categorized as support or overhead for major combat units, such as health care costs for military retirees—one of the few categories of O&S costs in this primer that CBO considered to be independent of decisions about the future size of the force. (For a discussion of CBO’s approach to judging which costs depend on the size of the force and which are independent of that size, see Box 1-2 on page 14.) The end result accounts for the entirety of DoD’s O&S budget—there are no activities, funding, or personnel that are not included in this analysis.

Because CBO’s force structure model is based on the 2017 FYDP, its estimates of the costs of major combat units, support units, and administrative and overhead activities are the amounts that DoD estimated those units would cost over the five-year period covered by the 2017 FYDP, not what they should or could cost. As a result, if DoD underestimated or overestimated the costs of certain support activities in its five-year plan, CBO’s estimates in this report will reflect that. Similarly, every FYDP reflects the implications of DoD’s choices about how to direct its resources toward such goals as improving units’ readiness for combat, compensating personnel, or manning units. CBO’s analysis did not explore alternative scenarios for how to choose among those goals.

How Changes in the Force Structure Would Affect Costs

Typically, DoD proposes changes in the force structure in its budget requests, and the Congress approves them or directs DoD to alter them. If the Congress wished to change the military’s force structure in a manner independent of DoD’s requests, it could use several available tools.

First, it could codify the force structure in law (as it did in section 5063 of the U.S. Code, which requires the Marine Corps to maintain at least three divisions and three air wings). Second, because the Congress is responsible for authorizing the total number of military personnel that each service maintains (the end-strength authorization), it could choose to authorize an end strength other than what DoD requests. Third, the Congress could bar DoD from using any funding to implement changes to the force structure of which it does not approve. (The Congress has used that power in recent years—for example, to prohibit the Air Force from retiring A-10 aircraft despite the service’s repeated requests to do so.) Such congressional actions would have a more rapid impact on the costs of U.S. forces than changes made through DoD’s decisionmaking process would. For instance, if the defense authorization act for any fiscal year included a new end-strength authorization, DoD would be obligated to try to achieve that new end strength in the same fiscal year.

The effect on DoD’s budget of cutting or adding forces would depend on how the changes were made. In the case of reducing the force structure, for example, eliminating a major combat unit would, at a minimum, eliminate within a few years the direct costs of operating that unit. If DoD was able to eliminate the unit’s associated support units, it would also save the costs of operating those units within a few years of deciding to do so. In addition, if DoD was able to trim the share of administrative and overhead activities associated with the major combat unit and its support units, the department could remove those costs as well—thus eliminating the total costs that CBO attributes to the fully supported major combat unit.

Historical evidence and other considerations suggest that DoD would make those associated cuts over several years.

6. Other CBO analyses have, for example, shown that DoD is planning to spend significantly more per service member to support its forces than it did before the conflicts in Iraq and Afghanistan or than historical trends would suggest. See Congressional Budget Office, Long-Term Implications of the 2016 Future Years Defense Program (January 2016), www.cbo.gov/publication/51050.
In the case of adding a major combat unit, direct, indirect, and overhead costs would change in the opposite direction, and the same considerations would apply.

In many instances, DoD’s internal decisionmaking processes do not explicitly link major combat units with their support units and their administrative and overhead costs. Thus, DoD would have to make several separate decisions to bring about all of the changes that CBO projects could flow from the single decision to eliminate a major combat unit. Because of the great complexity of the force structure and the many roles that different types of units play, that sequential decisionmaking process gives ample opportunity for concerned parties within DoD to argue against a commensurate reduction in support units or administrative and overhead activities. For example, DoD frequently changes the mix of support units in the force, and a proposed reduction in a support activity often provokes discussion about whether that form of support has become more useful over time and thus should be protected from a planned cut.

In other cases, the size of a support or administrative activity may be based on several different missions, and cuts that reduce the need for one mission may not allow proportionate cuts in that activity because of the requirements of the other missions. For instance, the Air Force’s fleet of bombers is intended to be able to conduct both conventional (nonnuclear) and nuclear bombing missions. If DoD wanted to keep its current conventional bombing capability but decrease the bomber portion of its nuclear deterrent, reductions in the bomber fleet based on nuclear bombing capability could be limited by the need to maintain the current amount of conventional bombing capability.

The range of costs that CBO attributes to each unit in this report can be thought of as representing the range of effects of making a change in the force structure. The direct cost alone should represent a lower bound for costs or savings, whereas the total costs should represent an upper bound for costs or savings that would be achievable if DoD and the Congress made the associated changes in indirect and overhead costs.

Once decided on, any large changes to the military’s force structure would take a number of years to implement. In general, adding or eliminating major combat units appears to take DoD about three to five years, so savings from reducing forces would not appear immediately. Moreover, the separate decisions that would be required to reduce support units or administrative and overhead activities might occur in subsequent rounds of decisionmaking, so the savings associated with reducing those activities might take even longer to materialize fully.

During the military drawdown that occurred in the early 1990s, DoD’s cuts in overhead activities lagged behind cuts in forces by several years, and savings took more than five years to be fully realized.

Other policy choices would also affect the costs or savings that would result from changes in the size of the force. Those choices include decisions about the pay and benefits of DoD’s personnel, the degree to which units are kept at full strength, the type of units considered necessary to support major combat units, and the preferred balance to strike in relying on active- versus reserve-component units. For the purposes of this analysis, CBO examined only the effects of changes to the size and composition of the force structure, assuming that all other policy factors would remain unchanged. That simplifying assumption, although useful for isolating the effects of a single type of policy choice, would not necessarily be true for all proposals to change the military’s forces—it is likely that several related policy decisions would be made at the same time. (For example, in its 2015 budget submission, the Army proposed both to reduce the size of its forces and to change how it assigns aviation units to its active and reserve components.)

7. Because DoD does not mechanically link decisions about all of the elements of the force structure together, the sheer number of different decisions, and the unique considerations relating to each type of unit, might make it difficult or impossible for DoD to make all of the relevant decisions during a single budget cycle. For example, in recent years, the Army’s plans in the FYDP included a “negative wedge” of funding intended to represent the difference between DoD’s plans for the Army’s funding and the costs of the Army’s planned structure. That wedge existed because the Army required several budget cycles to decide on the full details of how it would draw down its forces to a smaller size.

8. The cost of pay and benefits for military personnel is a key factor in the long-term affordability of the armed forces, accounting for about one-third of DoD’s budget. Military compensation has been the focus of substantial public discussion and numerous policy proposals. See, for example, Congressional Budget Office, Costs of Military Pay and Benefits in the Defense Budget (November 2012), www.cbo.gov/publication/43574, and Approaches to Reducing Federal Spending on Military Health Care (January 2014), www.cbo.gov/publication/44993. This primer reflects DoD’s plans as recorded in the 2017 FYDP, which do not include any changes to current compensation policies.
Box 1-2.

Why CBO Projects That Most of DoD’s Operation and Support Costs Are Proportional to the Force Structure

One of the issues that the Congressional Budget Office faced in conducting this analysis was determining which of the Department of Defense’s (DoD’s) costs depend on the size of the force and which are independent of that size. In this analysis, CBO treats virtually all of DoD’s operation and support (O&S) funding and personnel as costs of sustaining the military’s force structure. In that view, costs that are unrelated to the size of the force (called independent costs, or fixed costs) make up a very small portion of the O&S budget; the only truly independent expense to DoD is health care costs for retired military personnel. Instead, the O&S budget is considered to consist almost entirely of costs that depend on the size of the force (sometimes called variable costs)—meaning that if the force structure was cut by 10 percent, for example, DoD’s O&S costs would decline by almost 10 percent.

Several factors contributed to CBO’s decision to treat nearly all of the O&S budget as dependent on the size of the force:

- Most of the activities funded by that budget could be affected by future policy choices;
- Few activities that might be considered independent costs are significant in size; and
- Historically, large changes in DoD’s budget have eventually affected most of the department’s activities.

Consequently, CBO projects that a large change in the force structure would, after several years, alter almost all of DoD’s operation and support accounts, aside from health care costs for retirees.\(^1\)

CBO’s approach is based on the view that some important DoD activities that might be considered fixed costs are actually the result of policy choices. For example, it is common to treat “maintaining the U.S. nuclear deterrent” as a fixed operating cost for DoD, for several reasons: That activity is fairly straightforward and generally proceeds with stable funding year after year; it produces a valuable, if hard-to-measure, source of defense (“deterrence”); the need for such deterrence is essentially constant; and the activity can easily be treated as a flat charge to DoD in analytic frameworks. However, the size of the U.S. nuclear deterrent is not fixed; it can easily be changed by policymakers and has been many times in the past. Similarly, although such things as the size of special-operations forces or the amount of resources invested in command and intelligence activities are easy to treat as fixed costs, they represent separate and meaningful policy choices about the size of special-operations forces or about how many resources should be devoted to command and control or intelligence. By treating those activities as changeable, CBO greatly reduced the scope of costs that are considered fixed costs.

The DoD activities that are classic examples of fixed O&S costs tend to be small. The military departments’ administrative and overhead costs are dominated by personnel commands, training commands, and medical commands, the size of which is largely determined by the overall number of personnel in the force, as well as by equipment commands, the size of which is indirectly determined by the number of personnel (since more personnel generally require more equipment). Similarly, the cost of defense-wide activities stems mainly from providing current military personnel or their families with various services, such as health care, commissaries and exchanges, schools for dependent children, payroll services, and

1. Health care costs for current military retirees reflect the cost of fulfilling obligations that the United States has already incurred (when those service members were employed by DoD). As such, these costs do not depend on the size of future forces. Pensions and other payments to current military retirees are also independent of the size of future forces, but they do not appear in DoD’s budget. Those payments are made from a mandatory account administered by the Treasury Department rather than from DoD’s current appropriations.
Costs Not Included in This Analysis

CBO’s analysis addresses operation and support costs for major combat units. Therefore, it does not include acquisition costs (for the development and purchase of major weapon systems, as well as upgrades to existing systems) or construction costs (for infrastructure such as buildings and housing at military installations). Those costs are significant, together making up almost one-third of DoD’s total budget (excluding appropriations to fund ongoing military operations).

Whereas O&S costs are tightly linked to the size of the force, DoD and lawmakers have substantial discretion over acquisition and construction costs. The size of the force structure does not necessarily determine the appropriate size of the budgets for weapon systems or infrastructure. For example, regardless of how many fighter squadrons the Air Force maintains, it faces separate choices about whether to purchase new advanced fighter aircraft, upgrade existing aircraft, or keep the current fleet of aircraft.

In many cases, if DoD chose to add units to the force structure, there would be predictable effects on acquisition and infrastructure costs, because DoD would need to purchase additional equipment or construct additional facilities for the new units. If, however, DoD eliminated units in the near future, savings in acquisition and
infrastructure costs would be much harder to predict. One reason is that many of DoD’s plans to acquire new weapon systems do not include enough purchases to replace all of the older models in the current force. A smaller force might allow DoD to scale back planned purchases of such weapon systems, or it could just as easily allow DoD to use the same funding to replace all of the older models with newer ones.

In some cases, the amount of detail in CBO’s model is limited by the way in which DoD categorizes activities in discrete chunks, called program elements, for the Future Years Defense Program. For example, the FYDP does not distinguish between Navy squadrons that have different types of fighter aircraft, using the same program element for squadrons equipped with older F/A-18C/D aircraft and for those equipped with newer F/A-18E/F aircraft. Thus, the FYDP does not provide any direct information for separating the costs of F/A-18C/D squadrons from those of F/A-18E/F squadrons. When possible, CBO tried to work around those shortcomings by using supplementary information, such as databases maintained by the services that include operating costs for different weapon systems. But making such distinctions was not always possible (including in the case of the Navy’s fighter squadrons). Limits on information were usually greatest in the case of weapon systems that have not yet been introduced (such as the F-35 Joint Strike Fighter), because the services often lack essential details about actual operating costs.

Guide to Reading This Report

This primer is designed to be a reference work with discrete entries, so it does not need to be read in a linear fashion. A reader who is interested in the structure of the Air Force or the costs of the Army’s infantry brigade combat teams can flip to the relevant section.

The next three chapters focus on the Departments of the Army, the Navy (including the Marine Corps), and the Air Force. The last chapter focuses on defensewide organizations within DoD that are not part of those departments. Each of the chapters has the same basic structure:

- The chapter begins with an introduction to the military department in question (or to defensewide activities) that describes the size of the department; the types of major combat units it provides; the way it typically organizes those combat units with their support units; the distribution of its personnel among direct, indirect, and overhead functions; and the relationship between units in the active and reserve components. The introduction also briefly discusses the strengths and limitations of the department’s overall forces.

- The majority of the chapter consists of individual entries for each type of major combat unit (or defensewide organization). Those entries cover the costs and personnel (direct, indirect, and overhead) associated with a given type of unit, the number of such units in DoD’s current and planned forces, the purpose and limitations of that type of unit, and the units’ past and planned use in operations.

- The chapter concludes with entries about topics that are of special interest to a particular department or to DoD as a whole. Those special topics cover activities that do not represent separate costs but that are nonetheless important for understanding the military’s force structure. For example, Chapter 4 includes separate entries that show the costs and personnel required for the Air Force’s squadrons of tactical aircraft, bombers, and unmanned air systems as types of major combat units. The chapter also includes a special-topic entry about the military’s strike capability (the ability to destroy a wide variety of enemy targets rather than a few specific types), which is provided in part by tactical aircraft, bombers, and unmanned air systems. In that example, strike capability is not a type of major combat unit or a separate cost, but DoD’s desire to be able to carry out strike missions is crucial to understanding why the Air Force maintains the set of combat units that it does.

Following the chapters, Appendix A provides an overview of the total cost and personnel required for each type of major combat unit, as well as the number of those units that DoD plans to maintain in each year of the 2017–2021 period covered by the 2017 FYDP. Appendix B shows how the costs and personnel counts for each type of major combat unit, as estimated by CBO, sum to the totals for DoD’s operation and support budget and military personnel reported in the 2017 FYDP. Finally, Appendix C summarizes the past military operations and current planning scenarios referred to in this report, with a focus on the types of forces used in each one.
Overview
The Department of the Army includes the Army’s active component; the two parts of its reserve component, the Army Reserve and the Army National Guard; and all federal civilians employed by the service. By number of military personnel, the Department of the Army is the biggest of the military departments. It also has the largest operation and support (O&S) budget. The Army does not have the largest total budget, however, because it receives significantly less funding to develop and acquire weapon systems than the other military departments do.

The Army is responsible for providing the bulk of U.S. ground combat forces. To that end, the service is organized primarily around brigade combat teams (BCTs)—large combined-arms formations that are designed to contain 4,400 to 4,700 soldiers apiece and include infantry, artillery, engineering, and other types of units. The Army has 30 BCTs in the active component and 26 in the National Guard (there are none in the Army Reserve). It has no plans to change those numbers over the next five years (see Table 2-1). The vast majority of the Army’s support units exist to support combat operations by BCTs, and the vast majority of the Army’s administrative units exist to create, train, and maintain BCTs and their support units.

The current organization of the Army into BCTs is a change from historical practice. Before the mid-2000s, when the service launched a “modularity” initiative, the Army was organized for nearly a century around divisions (which involved fewer but larger formations, with 12,000 to 18,000 soldiers apiece). During that period, units in Army divisions could be separated into ad hoc BCTs (typically, three BCTs per division), but those units were generally not organized to operate independently at any command level below the division. (For a description of the Army’s command levels, see Box 2-1.) In the current structure, BCTs are permanently organized for independent operations, and division headquarters exist to provide command and control for operations that involve multiple BCTs.

The Army is distinct not only for the number of ground combat forces it can provide but also for the large number of armored vehicles in its inventory and for the wide array of support units it contains. Those support units include units with significant firepower, such as artillery brigades (which have missile launchers as well as traditional cannon artillery), aviation brigades (which have attack, reconnaissance, utility, or cargo helicopters), and other combat arms (such as Patriot missile launchers to defend against other missiles and aircraft). Army support units include many other types of specialized units, such as construction engineers, military intelligence, military police, and the Army’s extensive logistics apparatus. Many of those types of units are responsible for supporting not just Army units in the field but all of the other services in a combat operation. For example, the Army is generally responsible for all theater logistics functions, port operations, and enemy prisoner-of-war detention operations.

Besides those combat and support units, the Army contains a number of smaller organizations that provide niche capabilities unrelated to BCTs. Two noteworthy examples are the Army’s special-operations forces (units such as the 75th Ranger Regiment, the 160th Special Operations Aviation Regiment, and the seven Special Forces Groups), and the Army’s responsibility for

1. Formations, such as BCTs, that contain a mix of different types of units are referred to as combined arms. Such formations offer advantages over homogenous formations because the different types of units can complement one another and help offset the limitations of any single type of unit. Although all BCTs include a mix of unit types, it is customary to refer to them by their predominant type of combat unit.

2. As noted in Chapter 1, “support” can have a wide variety of meanings in the military, and whether a unit is generally considered a combat unit or a support unit does not mean that it always plays that role in a particular operation. For more details, see Box 1-1 on page 10.
operating the Ground-Based Midcourse Defense portion of the national missile defense system (both of which are discussed in Chapter 5).

Distribution of Army Personnel

Of the nearly 1 million military personnel serving in the Army as a whole, roughly half are in support units and a third are in combat units (see Table 2-2). The rest belong to units that perform various overhead functions, such as recruiting, training, and equipping combat units. The Army’s reserve component is slightly larger than its active component, with 54 percent of the service’s total personnel.

Since the 1970s, the Army has interpreted the Department of Defense’s Total Force Policy—which involves treating a service’s various components as a single force—by concentrating combat units in the active component and support units in the reserve component. Over the 2017–2021 period, the Army plans to have an average of 59 percent of its combat personnel in the active component and 75 percent of its support personnel in the reserve component. The practical effect of that distribution is that the Army has enough support units in its active component to conduct relatively small operations on its own, but larger combat operations usually require it to mobilize a significant number of reservists to provide support for the active-component combat units—as occurred during the occupation of Iraq. (For more discussion of the implications of that structure, see the special-topic entry about integration of the Army’s active and reserve components on page 38.)

Command Levels and Units

The Army’s combat units are organized in a recursive pattern: A unit at any command level contains two to five subordinate units of a similar type, plus additional supporting units. For example, an infantry _brigade_ has two or three infantry battalions, a cavalry squadron, and a single battalion each of special troops, artillery, engineers, and logistics. Similarly, an infantry _battalion_ has three infantry companies, a heavy weapons company, and a headquarters company. That pattern is repeated at lower levels (a _company_ consists of platoons, and _platoons_ consist of squads) and at higher levels (a _division_ consists of brigade combat teams, and a _corps_ consists of divisions), as detailed in Box 2-1. However, some command levels have different names depending on the type of unit; for instance, cavalry squadrons are at the same command level as infantry battalions.

This analysis treats supporting units as directly connected to combat units in a fixed relationship, but that treatment is an approximation that is valid only when discussing force planning. In actual operations, most support units are assigned to higher command levels, which give them specific missions. A BCT does not include the support units that the Congressional Budget Office attributes to it in this analysis—those units are _division_, _corps_, or theater-level assets that would be deployed to support the BCT and without which the BCT could not function. Furthermore, although the Army’s plans involve maintaining a given set of units in the force structure, the commander of a specific operation can, and often does, tailor the mix of support units that are deployed to suit the circumstances of a particular theater of operations. For example, during the occupation of Iraq, the Army generally did not deploy artillery or air-defense units, although it had them in its force structure. Such units were considered unnecessary in that operation, and some were converted to perform roles deemed more useful during the occupation, such as protecting supply convoys.

3. Cavalry units are units that perform the same armed reconnaissance role once carried out by troops on horseback. Today, cavalry units are equipped with helicopters, tanks, armored fighting vehicles, or wheeled vehicles.
Historically, ground combat units have been classified using weight-related terms, which reflect the weight of the units’ equipment and their commensurate speed and ability to maneuver. For decades, the Army broadly classified its forces in that way: Armored and mechanized infantry units, which had the heaviest armored vehicles, were considered “heavy” forces, whereas infantry, air-assault, and airborne units, which had only a few or no armored vehicles, were considered “light” forces.

Today, the Army has three types of brigade combat teams, which are roughly analogous to heavy, medium, and light forces—armored BCTs have large numbers of the heaviest armored vehicles, Stryker BCTs have large numbers of
lightly armored vehicles (called Stryker vehicles), and infantry BCTs have few armored vehicles. The Army maintains a mix of BCTs so it can use the type of unit most appropriate for a given military operation.

A possible source of confusion when discussing Army units is that although combat units generally have a fixed set of subordinate units assigned to them, many support units do not have such a fixed composition. Instead, they are intended to have units assigned to them as the need arises. For example, a combat brigade typically has more than 4,000 personnel assigned to it, but a support brigade might have only about 100 personnel. That difference does not indicate a large variation in size between the two types of brigades; rather, it reflects the fact that the support brigade does not have permanently assigned subordinate units. (Support brigades are perhaps better thought of as brigade headquarters, which are company-size units of about 100 personnel that provide command and control for subordinate support units.) Thus, it is important to note whether a given Army unit includes or does not include subordinate units. Similarly, descriptions of the total number of brigades in the Army can be misleading because of differences between BCTs and other types of brigades.

Another possible source of confusion involves differing ways to count the number of personnel in a unit. The size and organization of Army units is based on an official template, the Army’s Table of Organization and Equipment for that type of unit. However, actual Army units do not always conform to their template for a variety of reasons—they may not include all of the subordinate organizations, they may be manned at a higher or lower level than 100 percent, or they may be transitioning from one template to another. (In recent years, for example, the Army has transitioned many of its BCTs from an older template, with two subordinate maneuver battalions, to the current design, with three subordinate maneuver battalions.) When discussing the size of BCTs, this report uses the personnel numbers in the Army’s official templates. For the aforementioned reasons, those numbers sometimes differ from the personnel numbers shown in the tables in this report, which are five-year averages based on the plans underlying DoD’s 2017 budget request.

Strengths and Limitations of Army Forces

Although each type of BCT has its own strengths and weaknesses, the Army’s ground forces overall are exceptionally powerful combat units that are generally considered capable of defeating any conventional ground forces—such as other national armies—that they might be expected to fight. The United States has not suffered a serious defeat from other conventional ground forces since 1950, when the Chinese military intervened in the Korean War. Since then, the U.S. Army has consistently been able to overwhelm opponents who have attempted conventional operations against it. (Its record is less clear-cut in unconventional warfare, as discussed below.)

The use of ground forces is generally thought to represent a high level of military commitment for the United States. In the past, the U.S. military has typically been able to achieve more ambitious goals in conflicts that have involved large Army deployments than in conflicts in which the U.S. commitment was limited to air and naval strikes. Ground forces were considered essential to the defense of South Korea in the 1950s, the liberation of Kuwait in 1991, and the overthrow of the Iraqi and Afghan governments in the 2000s. Although U.S. efforts to defend South Vietnam in the 1960s and 1970s were ultimately unsuccessful, conventional operations by the North Vietnamese to conquer South Vietnam did not succeed until after U.S. ground forces withdrew from the theater. (For a discussion of those and other past military operations, see Appendix C.)

4. For much of the 2000s, the Army formally called some brigade combat teams “heavy BCTs,” but it has since renamed them “armored BCTs.”

5. That practice is most common for support units that perform logistics functions, such as transportation or maintenance. By contrast, units that support BCTs by providing artillery or aviation generally have a full set of subordinate units assigned to them.
Army ground forces have had more difficulty, however, in achieving U.S. aims against adversaries who have employed unconventional methods of combat, such as guerrilla warfare. Notable examples of those difficulties include attempts to suppress Viet Cong and North Vietnamese army units during the Vietnam War, insurgents in Iraq, and the resurgent Taliban in Afghanistan. Because Army units generally performed well in direct combat, those adversaries often tried to avoid direct combat and achieve their objectives through other means. Unconventional operations can be extremely long, and U.S. adversaries frequently achieve their goals by surviving as a viable force until the United States leaves the theater.

The Army has periodically tried to change its structure in ways that would make it more successful at fighting unconventional conflicts. Historically, those attempts have often included efforts to increase the size and capability of special forces (units that specialize in unconventional missions such as guerrilla warfare and counterinsurgency). The Army's special forces have tried to help U.S. allies train their own militaries to a higher level of capability or conduct their own counterinsurgency campaigns. Although special forces have had some success in such efforts, the United States has a limited ability to influence the governments of its allies. Moreover, as events in South Vietnam, Iraq, and Afghanistan demonstrate, some allies have difficulty defending themselves despite substantial long-term training and investment by the United States.

The future size and makeup of the Army will be affected by the types of conflicts and commitments that U.S. leaders expect to face as well as by the size of the defense budget. If the future security environment is dominated by scenarios that place more emphasis on naval and air forces—such as potential operations around Taiwan, the South China Sea, or the Strait of Hormuz at the mouth of the Persian Gulf—the need for Army ground forces may decline. (For a discussion of DoD’s planning scenarios for those and other areas, see Appendix C.) Conversely, the need for Army ground forces may increase if the United States has to contend with circumstances such as Russian aggression in Europe.

What This Chapter Covers
The rest of this chapter presents CBO’s analysis of the following major elements of the Army’s force structure (listed here with the percentage of the Department of the Army’s O&S costs that they account for):

- Armored brigade combat teams (24 percent); see page 22.
- Stryker brigade combat teams (17 percent); see page 28.
- Infantry brigade combat teams (40 percent); see page 32.
- Other units and activities, such as aviation brigades and special-operations forces (19 percent); see page 36.

This chapter also examines three topics of special concern to the Department of the Army:

- The integration of the Army’s active and reserve components; see page 38.
- The role of manning levels in units’ readiness for deployment; see page 40.
- Deployment times and rotation ratios; see page 42.
Major Element of the Force Structure

Army Armored Brigade Combat Teams

<table>
<thead>
<tr>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>17,450</td>
<td>4,200</td>
<td>9,090</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>2,610</td>
<td>500</td>
<td>840</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>14,440</td>
<td>4,140</td>
<td>9,090</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>820</td>
<td>180</td>
<td>390</td>
</tr>
</tbody>
</table>

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendices A and B.

Armored brigade combat teams (BCTs) are large tactical formations that operate fairly independently. They are designed to include about 4,700 personnel and are equipped with the heaviest and most powerful armored combat vehicles in the U.S. inventory: M1 Abrams series tanks, M2/M3 Bradley series infantry vehicles/scout vehicles, M109 series self-propelled howitzers, and numerous M2- and M113-derived support vehicles. (See Figure 2-1 on page 24 and the legend in Figure 2-2 on page 26 for the size and organization of an armored BCT.) Vehicles such as those—which run on tracks for off-road mobility and are heavily armored to protect against attack—are not assigned to all elements of an armored BCT. Each BCT also has several hundred wheeled vehicles that generally are not armored. Nevertheless, armored BCTs are, by a large margin, the most heavily armed and armored variety of U.S. ground forces.

Current and Planned Structure. The Army will field nine armored BCTs in its active component and five in the National Guard in 2017, with no plans to change those numbers through 2021. In all, the armored BCTs in the active and reserve components—along with their supporting units and overhead—account for about 24 percent of the Army’s operation and support funding.

Purpose and Limitations. Armored BCTs are descendants of the heavy divisions that were intended, during the Cold War, to defend Europe in the event of a large-scale attack by Soviet forces. Although in recent years the Army has not focused specifically on the ability to destroy opponents’ armored vehicles, armored BCTs still have strong antiarmor capability, particularly when supplemented with Army helicopters and other U.S. airpower. Armored BCTs can also be used against lighter conventional forces that do not include heavy armored vehicles. However, because armored BCTs are far superior to lighter forces in terms of firepower, protection, and cross-country mobility, few adversaries are likely to willingly commit their lighter forces in open combat against armored BCTs. (In ground combat, light forces tend to be less mobile than heavy forces because they are intended to fight on foot and because the wheeled vehicles that transport them to the battlefield have less off-road capability than tracked armored vehicles do.)

The main drawback of armored BCTs is that they lose many of their combat advantages in complex terrain (such as forests, jungles, mountains, or urban areas) as well as in unconventional combat (such as guerrilla warfare). In such conditions, armored vehicles are more vulnerable to attack, have less ability to use their firepower, and cannot benefit from their tactical mobility. Although armored BCTs still have some advantages over lighter forces under those conditions, defense planners generally believe that the high costs of armored BCTs relative to those of lighter forces make them less well suited for such missions. In addition, in areas with poor infrastructure, armored BCTs may be less suitable for some operations because of their logistics demands (such as high fuel consumption) and related issues (such as the need for bridges that can support the weight of armored vehicles).
A frequent concern raised about armored BCTs is that their weight and extensive support requirements make them harder and slower to deploy to distant locations than light forces are. In many cases, however, that limitation does not significantly hinder an operation. One reason is that although an armored BCT has much heavier equipment than, for example, an infantry BCT, the United States rarely deploys a single brigade of any type on its own, using air transport, to an unexpected location with great haste. Rather, a brigade is deployed as part of a full “force package” that typically includes a large number of support units, which diminishes the difference in equipment weight between heavy and light forces. Moreover, a deployment could involve many BCTs, which would overwhelm air-transport capabilities and make sea transport mandatory, and it could involve a location (such as the Korean Peninsula or the Persian Gulf) where the United States has stockpiled prepositioned equipment on land or on board ships.

In addition, in many conflicts—such as the removal of Iraqi forces from Kuwait in 1991 (Operation Desert Storm) and the invasion of Iraq in 2003 (Operation Iraqi Freedom)—the United States had a long time to deploy forces, reducing the importance of deployment speed. (For a description of those and other past military operations, see Appendix C.) To the extent that U.S. planners are concerned about deployment speed, investments in stocks of prepositioned equipment and additional cargo ships can greatly reduce deployment times in most scenarios, without requiring the military to forgo the combat capabilities of heavy forces.

Past and Planned Use. Armored BCTs evolved from Cold War-era armored divisions and mechanized infantry divisions, which were referred to as heavy divisions. Their equipment and organization have historically been oriented toward high-intensity combat with conventional armored opponents, as was envisioned during the Cold War, when U.S. heavy forces were prepared to defend West Germany against massive Soviet armored assaults.

More recently, the United States relied extensively on heavy divisions during Operations Desert Storm and Iraqi Freedom, but it did not use any heavy forces in the invasion of Afghanistan in 2001 (Operation Enduring Freedom). In later counterinsurgency operations in Iraq and Afghanistan, that pattern was repeated: The United States employed large numbers of heavy BCTs in Iraq but none in Afghanistan. However, the heavy BCTs used in Iraq often operated in a modified configuration without their heavy vehicles, which made them better suited to counterinsurgency and urban operations—an example of the way the Army adapts its units to meet the needs of each operation.

In the 1990s, the Department of Defense’s post–Cold War planning focused on the ability to fight two theater-size wars at the same, or nearly the same, time (see Appendix C). DoD generally assumed that each of those wars would require the equivalent of about 11 heavy brigades. (At the time, the Army used divisions as its basic units; it assumed that three heavy divisions and two armored cavalry regiments would be necessary for the combat phase of each war.) Subsequent planning has been more flexible but envisions that a similar number of combat brigades would be needed for a major conflict. Thus, according to that standard, the Army’s planned 2021 force of nine active-component armored BCTs and five National Guard armored BCTs would probably not be sufficient for such a two-war scenario. In practice, however, the United States currently has few, if any, potential opponents that can field enough modern armored forces to require the Army to use large numbers of armored BCTs against them in a conflict. In addition, the United States has other types of BCTs (Stryker and infantry) that would be capable of contributing in a conflict, although they do not have the same characteristics as an armored BCT.

6. The Army sees substantial advantages in using armored units together with mechanized infantry units (infantry that are equipped with infantry fighting vehicles rather than with tanks). Thus, it combines the two types of units at all but the very lowest command levels. For a long time, such combined units were referred to generically as heavy forces. The Army recently changed their name from “heavy BCTs” to “armored BCTs,” but those brigades have the same mixture of armored and mechanized infantry units as before.
Figure 2-1.

Units, Equipment, and Personnel in an Army Armored Brigade Combat Team
Figure 2-1. Units, Equipment, and Personnel in an Army Armored Brigade Combat Team

Source: Congressional Budget Office, using data from the Department of Defense.

For a key to the icons in this figure, see Figure 2-2.
Figure 2-2.
Legend for Army Equipment and Personnel

<table>
<thead>
<tr>
<th>Armored Vehicles</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1A2 Abrams Main Battle Tank</td>
<td>M2/3 Bradley Engineer Vehicle With Trailer</td>
</tr>
<tr>
<td>M2/3 Bradley Fighting Vehicle/ M7 Bradley Fire Support Vehicle</td>
<td>M104 Wolverine Heavy Assault Bridge</td>
</tr>
<tr>
<td>M109A6 Paladin 155 mm Howitzer</td>
<td>M109A6 Paladin 155 mm Howitzer</td>
</tr>
<tr>
<td>M992A2 Ammo Support Vehicle</td>
<td>M992A2 Ammo Support Vehicle</td>
</tr>
<tr>
<td>M577A1 Command Post Carrier</td>
<td>M126 Stryker Infantry Carrier</td>
</tr>
<tr>
<td>M113A3 Armored Personnel Carrier/ M1064 120 mm Mortar Carrier</td>
<td>M127 Stryker Reconnaissance Vehicle</td>
</tr>
<tr>
<td>M1113A3 Ambulance</td>
<td>M1128 Mobile Gun System</td>
</tr>
<tr>
<td>M577A1 Medical Treatment Vehicle</td>
<td>M1129 Stryker Mortar Carrier</td>
</tr>
<tr>
<td>M1113 Armored Security Vehicle</td>
<td>M1130 Stryker Command Vehicle</td>
</tr>
<tr>
<td>M88A1 Medium Recovery Vehicle/ M88A2 Improved Recovery Vehicle (Hercules)</td>
<td>M1131 Stryker Fire Support Vehicle</td>
</tr>
<tr>
<td>XM1150 Assault Breacher Vehicle With Mine Plow</td>
<td>M1132 Stryker Engineer Support Vehicle</td>
</tr>
<tr>
<td>XM1150 Assault Breacher Vehicle With Mine Plow</td>
<td>M1133 Stryker Medical Evacuation Vehicle</td>
</tr>
<tr>
<td>M9 Armored Combat Earth Mover (ACE)</td>
<td>M1134 Stryker Antitank Guided Missile Vehicle</td>
</tr>
<tr>
<td></td>
<td>M1135 Stryker Nuclear Biological Chemical Reconnaissance System</td>
</tr>
</tbody>
</table>
Legend for Army Equipment and Personnel

<table>
<thead>
<tr>
<th>Light Trucks</th>
<th>Medium Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M998/M1038 High Mobility Multipurpose Wheeled Vehicle (HMMWV)</td>
<td>M1078 Light Medium Tactical Vehicle</td>
</tr>
<tr>
<td>M1114/1151A1 Uparmored HMMWV</td>
<td>M1083 Medium Tactical Vehicle</td>
</tr>
<tr>
<td>M1113 Expanded Capacity HMMWV With Rigid Wall Shelter</td>
<td>M1083 Medium Tactical Vehicle With M1095 Cargo Trailer</td>
</tr>
<tr>
<td>M1097A2 Heavy Variant HMMWV With Shelter</td>
<td>M1083 Medium Tactical Vehicle With Kitchen or Tool Set Trailer</td>
</tr>
<tr>
<td>M997 HMMWV Ambulance</td>
<td>M1083 Medium Tactical Vehicle With Water Tank Trailer</td>
</tr>
<tr>
<td>Secure, Mobile, Antijam, Reliable Tactical-Terminal (SMART-T)</td>
<td>M1083 Medium Tactical Vehicle With Generator or Welding Trailer</td>
</tr>
<tr>
<td>AN/TSG-190 Trojan Spirit HMMWV/Trailer</td>
<td>M1083 Medium Tactical Vehicle With Power Plant Trailer</td>
</tr>
<tr>
<td>Unmanned Air System Ground Control Station</td>
<td>M1088 Medium Tactical Vehicle Tractor With M129A3 Semitrailer</td>
</tr>
<tr>
<td>AN/MLQ-40 Prophet Detecting System Countermeasures</td>
<td>M1089 Medium Tactical Wrecker</td>
</tr>
<tr>
<td></td>
<td>M1088 Medium Tactical Vehicle Tractor With M172A1 Lowbed Semitrailer</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td></td>
</tr>
<tr>
<td>M1120 Heavy Expanded Mobility Tactical Truck Load Handling System and Trailer</td>
<td></td>
</tr>
<tr>
<td>M1074/M1075 Heavy Cargo Truck Palletized Load System Transporter</td>
<td></td>
</tr>
<tr>
<td>M1074 Palletized Load Transport With Forward Repair System</td>
<td></td>
</tr>
<tr>
<td>M984A1 Heavy Expanded Mobility Tactical Truck Wrecker</td>
<td></td>
</tr>
<tr>
<td>M978 Heavy Expanded Mobility Tactical Truck Fuel Tanker With Fuel Trailer</td>
<td></td>
</tr>
<tr>
<td>M977/M985 Heavy Expanded Mobility Tactical Cargo With Trailer</td>
<td></td>
</tr>
<tr>
<td>M916 Tractor Truck With M172A1 Lowbed Semitrailer</td>
<td></td>
</tr>
<tr>
<td>M1977 Common Bridge Transporter With Rapidly Emplaced Bridge Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>M198 Towed 155 mm Howitzer</td>
</tr>
<tr>
<td></td>
<td>M19A1/A2 Towed 105 mm Howitzer</td>
</tr>
<tr>
<td></td>
<td>Rough Terrain Forklift</td>
</tr>
<tr>
<td></td>
<td>Interim High Mobility Engineer Excavator</td>
</tr>
<tr>
<td></td>
<td>All Terrain Lifter Articulated System (Atlas Forklift)</td>
</tr>
<tr>
<td></td>
<td>Shadow Launch/Recovery Trailer and RQ-7 Shadow Tactical Unmanned Air System</td>
</tr>
<tr>
<td></td>
<td>Deployable Light Engineer Tractor (Deuce)</td>
</tr>
<tr>
<td></td>
<td>Multipurpose Loader</td>
</tr>
<tr>
<td></td>
<td>Personnel</td>
</tr>
<tr>
<td></td>
<td>Ten Personnel</td>
</tr>
<tr>
<td></td>
<td>One Person</td>
</tr>
</tbody>
</table>

Source: Congressional Budget Office.
Major Element of the Force Structure

Army Stryker Brigade Combat Teams

<table>
<thead>
<tr>
<th>Military Personnel per Unit</th>
<th>Active-Component Stryker Brigade Combat Team</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,180</td>
<td>4,440</td>
<td>8,590</td>
<td>4,150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual Cost per Unit (Millions of 2017 dollars)</th>
<th>National Guard Stryker Brigade Combat Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,560</td>
<td>800</td>
</tr>
</tbody>
</table>

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

Like armored brigade combat teams (BCTs), Stryker BCTs are large tactical formations that can operate relatively independently. However, Stryker BCTs are designed to have about 200 fewer personnel than armored BCTs are designed to have (approximately 4,500) and are equipped not with heavy, tracked armored vehicles but with medium-weight, wheeled armored vehicles of the Stryker family. (That general type of vehicle is sometimes called an armored personnel carrier.) Not all of the elements of a Stryker BCT are assigned Stryker vehicles; each BCT also has several hundred wheeled vehicles that generally are not armored. (See Figure 2-3 on page 30 and the legend in Figure 2-2 on page 26 for the size and organization of a Stryker BCT.) Even so, Stryker BCTs provide the Army with more infantry in armored personnel carriers than any other type of brigade combat team.

Current and Planned Structure. The Army will field seven Stryker BCTs in the active component and two in the National Guard in 2017. In its 2017 budget request, it indicated no plans to change those numbers through 2021. Those Stryker BCTs—along with their supporting units and overhead—account for about 17 percent of the Army’s operation and support (O&S) funding.

Purpose and Limitations. Stryker BCTs were created as part of a 1999 initiative to transform the Army into a more mobile and responsive force. The Stryker family of vehicles was intended to provide a medium-weight force that would be easier to deploy rapidly than heavy forces but that would have more combat power and ability to move around the battlefield than light forces. Plans at the time called for making Stryker vehicles small and light enough to fit on C-130 transport aircraft. However, combat experience in Iraq has led the Army to improve the armor of most of its vehicles, and Stryker vehicles have become much too heavy to be transported on C-130s.

Although the Stryker force was originally envisioned as capable of rapid deployment to conventional operations, it has proved helpful in fighting unconventional forces, such as those in Iraq and Afghanistan. Such operations require large numbers of infantry personnel and benefit when all of those personnel have access to armored transport vehicles—both traits that Stryker BCTs possess. Similarly, the infrastructure in Afghanistan is too poor for the tanks and fighting vehicles of armored BCTs to operate there, but the lighter-weight Stryker vehicles can operate in parts of that country.

The main limitation of Stryker BCTs is that they truly are middle-weight forces. They are not as light as infantry BCTs (described in the next section), which makes them difficult to deploy by air on short timelines. But they also are not as well armed and protected as armored BCTs, which means they would suffer in a confrontation with a modern conventional armored force. Those disadvantages might not be meaningful in the context of long-term operations against insurgents, but they could be significant in a future conflict against conventional forces. Furthermore, although they can cope with poor infrastructure...
better than armored BCTs can, Stryker BCTs still face some constraints when operating in areas with poor road networks, and they pose a fairly significant logistics burden.

For the past decade, the Army has been reducing the fraction of armored BCTs in its force in favor of Stryker and infantry BCTs. The Army has often cited the cost of maintaining heavy forces as one of the reasons for that shift. However, the analysis that the Congressional Budget Office conducted for this report indicates that there is virtually no difference in operation and support costs between armored and Stryker BCTs. (The costs of acquiring Stryker vehicles and heavy armored vehicles can differ, however.) Although Stryker BCTs do not have a major O&S cost advantage over armored BCTs, their operational advantages in counterinsurgencies and areas with poor infrastructure may provide a sufficient rationale for the Army’s shift.

Past and Planned Use. Stryker BCTs are a relatively new type of unit and have been employed in only two major operations: the occupations of Iraq and Afghanistan. The Marine Corps used wheeled Light Armored Vehicles (known as LAVs), which are similar to Stryker vehicles, in a brigade-size formation during the invasion of Iraq in 2003, reportedly to good effect. And the Army has deployed Stryker brigades to Afghanistan, despite (or perhaps because of) the relatively poor infrastructure there. (For a discussion of those and other past military operations, see Appendix C.)

Stryker BCTs did not exist during most of the 1990s, when the Department of Defense’s post–Cold War planning called for being able to fight two wars simultaneously (or nearly simultaneously). The Army’s force of seven active-component Stryker BCTs and two National Guard Stryker BCTs appears likely to be capable of contributing in any conflict: DoD envisions few scenarios in which infrastructure constraints are worse than those in Afghanistan, and few, if any, potential U.S. opponents have enough armored forces to threaten the viability of the medium-weight Stryker BCTs (see Appendix C).
Figure 2-3.
Units, Equipment, and Personnel in an Army Stryker Brigade Combat Team

Brigade Headquarters
HQ Company

Fires (Artillery) Battalion
HQ Battery
Fires Battery (155 T)
Fires Battery (155 T)
Target Acquisition Platoon

Cavalry Squadron
HQ Troop
Cavalry Troop
Cavalry Troop
Cavalry Troop

Infantry Battalion
Rifle Company
Rifle Company
Rifle Company
Rifle Company

Infantry Battalion
Rifle Company
Rifle Company
Rifle Company
Rifle Company

Infantry Battalion
HQ Company
HQ Company
HQ Company
HQ Company

Continued
Units, Equipment, and Personnel in an Army Stryker Brigade Combat Team

Figure 2.3. Continued

Source: Congressional Budget Office, using data from the Department of Defense.

For a key to the icons in this figure, see Figure 2-2 on page 26.
Major Element of the Force Structure

Army Infantry Brigade Combat Teams

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active-Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Personnel per Unit</td>
<td>16,250</td>
<td>4,230</td>
<td>8,090</td>
<td>3,920</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>2,410</td>
<td>450</td>
<td>750</td>
<td>1,210</td>
</tr>
<tr>
<td>National Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Personnel per Unit</td>
<td>12,720</td>
<td>3,560</td>
<td>8,090</td>
<td>1,060</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>700</td>
<td>140</td>
<td>350</td>
<td>220</td>
</tr>
</tbody>
</table>

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

Infantry brigade combat teams (BCTs)—also commonly called light BCTs—are relatively independent tactical formations that are designed to include approximately 4,400 personnel. Most of those personnel are expected to engage in combat on foot, although each infantry BCT also has several hundred wheeled, generally unarmored, vehicles assigned to it for transport. (See Figure 2-4 on page 34 and the legend in Figure 2-2 on page 26 for the size and organization of an infantry BCT.) Unlike armored or Stryker BCTs, infantry BCTs come in some specialized variants. For example, airborne units (such as the brigades of the 82nd Airborne Division) are specially trained and equipped to drop by parachute from fixed-wing aircraft, and air-assault units (such as the brigades of the 101st Air Assault Division) are given special training and additional supporting helicopters to conduct assaults from rotary-wing aircraft. Because they have the least equipment weight, infantry BCTs are considered the easiest to deploy of all types of brigade combat teams.

Current and Planned Structure. Infantry brigade combat teams are the most numerous type of BCT. The Army will field 14 in its active component and 19 in the National Guard in 2017, with no plans to change those numbers through 2021. Together, infantry BCTs and their supporting units and overhead are responsible for about 40 percent of the Army’s operation and support funding.

Purpose and Limitations. Infantry BCTs are a product of the Army’s renewed focus in the 1980s on the concept of light infantry, in which troops fight entirely on foot, although with some motor transport available. Such forces are designed to be capable of deploying rapidly to distant locations. However, because they have no armored vehicles and few vehicle-mounted weapons, the Army’s light forces lack the protection and combat power of heavy forces. Nevertheless, infantry BCTs have significant firepower, and they are capable of calling on the same array of support assets—such as artillery, attack helicopters, and air strikes—as any other type of BCT. In addition, infantry BCTs can often operate more effectively than armored forces in such difficult locations as cities, forests, or mountains, where they can derive substantial defensive benefits from the terrain. For those reasons, unless infantry BCTs are facing large armored forces in unfavorable terrain, they are considered suitable for a wide variety of operations.

The Army’s different types of light forces are often grouped together in discussions of their utility in conflicts, but the specialized abilities of airborne and air-assault units are intended to provide important and unique capabilities. For example, both types of forces contribute to the Army’s ability to conduct forcible-entry operations, which involve gaining access to enemy
Although infantry BCTs are touted for their ability to deploy quickly, that characteristic may be less advantageous than it would seem at first glance. With support units excluded, an infantry BCT has roughly one-quarter of the unit weight of an armored BCT, and all of its equipment can be transported by air. However, for a variety of reasons, that difference is likely to be valuable only in certain types of small operations. Support units for heavy and light forces are fairly similar in weight; though tanks require more logistical support than people do, the hundreds of wheeled vehicles in both armored and infantry BCTs require similar logistical support (compare Figure 2-1 on page 24 and Figure 2-4 on page 34). Moreover, unless infantry BCTs are deployed without support (which is unlikely except for very short and low-risk missions), the need to deploy support units as well as combat units makes fully supported infantry BCTs only a little faster to deploy than heavier BCTs—and means that both types of units would probably require sea transport for any large operation. The Army is most likely to benefit from the light weight of infantry BCTs when deployment speed is more important than combat power (such as in some humanitarian interventions) or when the total force to be committed is fairly small (such as in the initial phase of the invasion of Afghanistan).

Past and Planned Use. Infantry BCTs evolved from the Army’s various infantry, airborne, and air-assault divisions, all of which had substantial similarities in organization and equipment. After focusing for many years on trying to fully mechanize all nonairborne infantry units, the Army revived the light-infantry concept in the 1980s. Light units were seen as a cost-effective way to increase the size of U.S. ground forces, especially for scenarios other than defending against Soviet armored assaults.

In recent decades, the operation to remove Iraqi forces from Kuwait in 1991 and the invasion of Iraq in 2003 involved light forces (at the time, infantry divisions rather than BCTs) to only a limited extent. By contrast, the invasion of Afghanistan in 2001 depended entirely on light forces, including Marine Corps and special-forces units. That pattern recurred in subsequent counterinsurgency operations in Iraq and Afghanistan: The United States used limited numbers of infantry BCTs in Iraq but relied heavily on them in Afghanistan (for a discussion of those and other past military operations, see Appendix C). However, in those operations, infantry units were assigned more vehicles than usual for mobility, and they were given armored vehicles for protection against improvised explosive devices as the use of those devices became more common.

In the 1990s, the Department of Defense’s post–Cold War planning focused on the ability to fight two theater-size wars at the same, or nearly the same, time (see Appendix C). DoD generally assumed that each of those wars would require the equivalent of about six light brigades. (At the time, the Army used divisions as its basic units; it assumed that two light divisions would be necessary for the combat phase of each war.) Subsequent planning has been more flexible but envisions that a similar number of combat brigades would be needed for a major conflict. Thus, according to that standard, the Army’s planned 2021 force of 14 active-component infantry BCTs and 19 National Guard infantry BCTs would probably be more than sufficient for a two-war scenario (see Appendix C). The United States currently has few, if any, potential opponents that can field large enough armored forces to make the use of infantry BCTs infeasible.
Figure 2-4.

Units, Equipment, and Personnel in an Army Infantry Brigade Combat Team

<table>
<thead>
<tr>
<th>Brigade Headquarters</th>
<th>Infantry Battalion</th>
<th>Infantry Battalion</th>
<th>Infantry Battalion</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ Company</td>
<td>HQ Company</td>
<td>Rifle Company</td>
<td>HQ Company</td>
</tr>
<tr>
<td></td>
<td>Rifle Company</td>
<td>Weapons Company</td>
<td>Rifle Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ Battery (105 T)</td>
<td>Fires Battery (105 T)</td>
<td>Fires Battery (155 T)</td>
<td>Target Acquisition Platoon</td>
</tr>
<tr>
<td>HQ Troop</td>
<td>Motorized Cavalry Troop</td>
<td>Motorized Cavalry Troop</td>
<td>Dismounted Cavalry Troop</td>
</tr>
</tbody>
</table>

Fires (Artillery) Battalion

Cavalry Squadron
Figure 2-4. Continued

Units, Equipment, and Personnel in an Army Infantry Brigade Combat Team

Source: Congressional Budget Office, using data from the Department of Defense.
For a key to the icons in this figure, see Figure 2-2 on page 26.
Major Element of the Force Structure

Other Department of the Army Units and Activities

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>4,300</td>
<td>3,020</td>
<td>0</td>
<td>1,280</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>890</td>
<td>490</td>
<td>0</td>
<td>410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>2,750</td>
<td>2,520</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>200</td>
<td>160</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Military Personnel</td>
<td>45,100</td>
<td>32,370</td>
<td>0</td>
<td>12,730</td>
</tr>
<tr>
<td>Total Annual Cost (Millions of 2017 dollars)</td>
<td>7,210</td>
<td>3,190</td>
<td>0</td>
<td>4,020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Military Personnel</td>
<td>12,570</td>
<td>8,860</td>
<td>0</td>
<td>3,710</td>
</tr>
<tr>
<td>Total Annual Cost (Millions of 2017 dollars)</td>
<td>3,180</td>
<td>2,000</td>
<td>0</td>
<td>1,180</td>
</tr>
</tbody>
</table>

"Direct" personnel and costs are associated with a major combat unit, "indirect" personnel and costs are associated with units that support the major combat unit, and "overhead" personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

a. In the analytic framework used for this report, other units and activities are generally considered to not have any units supporting them and thus to not have any indirect personnel or costs.

Although the vast majority of Army units are connected with brigade combat teams (BCTs), the service has a small number of other units that are not directly linked to BCTs, such as helicopter units and various special-operations forces. Together, those units, along with their associated overhead, account for 19 percent of the Army’s operation and support funding.

Through World War II, the Army used various types of fixed-wing combat aircraft. After the war, however, the Air Force was spun off as a separate service from the Army. Since then, interservice agreements have prohibited the Army from using fixed-wing aircraft for combat (although it continues to use them for other purposes, such as reconnaissance and transport). Instead, the Army’s aviation brigades rely on helicopters.

In most respects, aviation brigades are similar to other types of supporting forces (as defined in this analysis), but they merit separate treatment because of their visibility and cost, the Army’s occasional use of them as independent forces, and the ease of distinguishing them from other supporting forces. The Army will field 11 aviation brigades in its active component in 2017 but plans to reduce that number to 10 by 2019. It will also field 11 aviation brigades in the reserve component but plans to increase that number to 12 by 2018.

The Army’s aviation brigades provide important forms of support in almost all operations involving Army forces. Those brigades include attack helicopters (AH-64 Apaches to attack targets on the ground) and utility and cargo helicopters (UH-60 Blackhawks and CH-47 Chinooks to transport soldiers, equipment, and supplies). Until recently, the Army also fielded reconnaissance helicopters (OH-58 Kiowas to scout for enemy forces), but it has since retired them. For light-infantry forces operating in poor terrain with limited infrastructure—such as
portions of Afghanistan—helicopter transportation is often the only practical method of deploying troops to and from combat operations.

The role of the Army’s attack helicopters (and, to a lesser degree, its former reconnaissance helicopters) has been the subject of debate, however. Those aircraft had a mixed record in some combat operations, such as in Kosovo in 1999 and in the initial phases of Operation Iraqi Freedom in 2003. Some observers argue that the Army’s attack helicopters are a relatively wasteful and duplicative means of providing close air support (attacks by aircraft on hostile targets that are close to friendly ground or naval forces). In that view, close air support is better provided by more capable fixed-wing aircraft from the other services. Other observers maintain that unmanned aerial vehicles (discussed in Chapter 4 in an entry “Air Force Unmanned Air System Squadrons,” on page 100) are well suited to take over the roles traditionally performed by attack and reconnaissance helicopters. Still other observers argue that the Army’s attack helicopters have a number of unique advantages—such as the ability to fly at low speeds—that are useful for working closely with ground forces. Adding fuel to the debate is the fact that the Army has had difficulty developing new reconnaissance helicopters; it canceled two attempts to develop a replacement for the former Kiowa fleet. (Army officials maintain that they continue to need reconnaissance helicopters, but they currently have no active program to purchase a replacement.)

Aviation brigades are one of the most costly types of supporting forces in the Army, and helicopters are some of the most expensive weapon systems that the Army procures. Thus, any future developments that reduced the Army’s use of attack and reconnaissance helicopters could yield substantial savings.

The Army’s special-operations forces include the 75th Ranger Regiment, the 160th Special Operations Aviation Regiment, and seven special-forces groups. (The costs and personnel numbers shown in the table above are for the Army’s special-operations forces as a whole rather than for individual units.) Those units—along with the special-operations forces of the other military services—are trained, equipped, and overseen by the Department of Defense’s Special Operations Command (SOCOM). They focus on such missions as unconventional warfare, special reconnaissance, counterterrorism, or the training of foreign militaries. The forces overseen by SOCOM are discussed in more detail in Chapter 5, which deals with defensewide activities in an entry, “Special Operations,” on page 111.

By the Congressional Budget Office’s estimate, more than 12,000 military personnel and almost $3.2 billion a year are devoted to units and activities of the Army other than those described in this chapter. They include a variety of smaller organizations providing niche capabilities that are neither BCTs nor units organized to support BCTs. The largest example is the Army’s operation of the Ground-Based Midcourse Defense portion of the national missile defense system. That system is the subject of a special-topic entry in Chapter 5, “Missile Defense,” on page 120. Other examples include the Army’s contributions to various joint commands and defensewide organizations, as well as some miscellaneous command-and-control functions.
Integration of the Army’s Active and Reserve Components

Each U.S. military service has an active and a reserve component, but the nature and size of the Army’s reserve component—as well as the way in which the Army integrates its two components—make the relationship among the active Army, the Army Reserve, and the Army National Guard a topic of special interest. Roughly two-thirds of the reserve-component personnel in the U.S. military are in the Army. Thus, in most cases, the Army’s policies toward its reserve component have a greater effect on how heavily the Department of Defense employs reserve personnel than do the policies of any other service.

In a traditional reserve system, reserve units represent additional increments of force that can be used if forces in the active component prove insufficient—as was the case in the Army in earlier decades and as is still largely the case in the Marine Corps. However, since the end of the Vietnam War, the Army has structured itself in a way that concentrates its combat forces in the active component and concentrates the units that provide essential support for those combat forces in the reserve component. (The active component contains only 46 percent of the Army’s total military personnel but 59 percent of the personnel in combat units; likewise, the reserve component contains 54 percent of the Army’s military personnel but 75 percent of the personnel in support units.)

That structure requires the Army to commit support units from the reserve component in order to deploy even modest numbers of combat units from the active component.8 The need for reserve-component units to support active-component combat forces was the main reason that the Army activated large numbers of reservists during the occupation of Iraq, for example. (Combat units in the reserve component were also activated and deployed for the occupation, but in much smaller numbers than active-component combat units.) Another result of that heavy reliance on reserve support personnel is that the Army can maintain a much larger number of combat units in its active component, at lower cost, than it could if it were organized in a less integrated way.

The benefits and drawbacks of the Army’s integrated structure have been the subject of numerous public debates and several Congressionally mandated commissions. Many of those debates have focused on intangible effects of that structure on reserve-component personnel or on the decisions of policymakers. However, some effects of that structure can be quantified.

If the Army stayed the same size but ceased having specialized active and reserve components and instead adopted a policy of supporting active-component combat units with active-component support units (and supporting reserve-component combat units with reserve-component support units), the active component would be able to support about 21 brigade combat teams (BCTs) rather than the current 30 BCTs. At the same time, the Army would be able to sustain 37 BCTs in the reserve component rather than the current 26.

If, instead of remaining the same size, the Army wanted to fully support its current 30 active-component BCTs with active-component support units rather than reserve-component support units, it would need to add at least 148,000 support personnel to the active component. And if the additional personnel had costs similar to those of current active-component Army personnel, the Department of Defense would require an additional $20 billion a year in operation and support funding.

The Army does not appear to be considering any dramatic changes to its current policies for integrating the active and reserve components (although smaller changes are frequently under consideration). However, the above examples show that any proposal to eliminate the active component’s dependence on reserve-component support units would entail trade-offs—either by requiring a much larger active-component force or by requiring the Army to shift combat units from the active component to the reserve component.

8. The ratio of active- to reserve-component personnel varies for each type of support unit. For example, the Army has a fairly large complement of aviation brigades in the active component, so it does not necessarily have to activate reserve-component aviation brigades for smaller deployments. At the other end of the spectrum, support units that focus on civil affairs or psychological operations have historically been overwhelmingly concentrated in the reserve component (with few, if any, units in the active component), so the Army must activate reservists for any operation requiring such units.
The Marine Corps and the Navy seem unlikely, in the foreseeable future, to adopt a model similar to the Army's integration of its active and reserve components. The Marine Corps' combat units deploy more frequently and routinely during peacetime than the Army's combat units do. That deployment schedule would make the Army's integrated model difficult for the Marine Corps to adopt unless DoD was willing to require frequent and routine peacetime mobilizations of reserve support units. The Navy is generally more constrained by the number of ships in its inventory than by the number of personnel it has. (The Air Force already uses a model in which its active and reserve components are even more deeply integrated and interdependent, in some respects, than the Army's are, as discussed in more detail in a section in Chapter 4, “Distribution of Air Force Personnel,” on page 82.)
Manning Levels, Readiness, and Deployability of Units

Discussions of the size of the force structure, costs per unit, or the readiness of units for deployment are complicated by the fact that many units do not operate with the number of military personnel officially required to fill them. Conceptually, all units in the U.S. military have a required number of personnel, and each service has a given force structure, which means that each service should theoretically have a set number of personnel it needs for its units. However, for various reasons, the Department of Defense frequently operates units with more or fewer personnel than they are designed for—a practice known as overmanning or undermanning.

Manning levels affect the number of units that a service can field from its total personnel, as well as the readiness and deployability of those units, especially in the Army and Marine Corps. Thus, decisions about manning levels are closely tied to the cost and utility of any given force structure. Such decisions also mean that the number of personnel included in a given force structure could vary widely, so there is no single correct number for how many people a service theoretically requires.

In this report, estimates of funding and personnel per unit are based on the actual manning levels that DoD has planned for the future. In most cases, changes to DoD’s decisions about manning levels would alter units’ costs, generally in almost linear fashion: A force consisting of units with lower manning levels than required would cost less (and need fewer personnel) but would be less ready and deployable; the opposite would be true for a force consisting of units with higher manning levels than required.

Reasons for Overmanning or Undermanning Units.
Assigning more people to a unit than required can be useful for a number of reasons. The most important is that when a unit is deployed, some fraction of its personnel will be unable to accompany the unit because of such issues as medical problems or impending separation from military service. If the unit is exactly at its required personnel level, the absence of those nondeployable personnel will leave the unit below full strength for its deployment. Overmanning nondeployed units provides a cushion of extra personnel, increasing the likelihood that they will be able to deploy with their full complement of required personnel. Experience suggests that units need a cushion of at least 10 percent of their required personnel in order to be realistically expected to deploy at full strength.

At some level, further overmanning would probably have diminishing returns, such that a force structure would be unlikely to benefit significantly from more personnel. In practice, however, the Army and Marine Corps do not appear to have neared that level at any point in recent years.

Undermanning units has its own advantages: reducing the cost of maintaining a given set of units or allowing a service to maintain more units with a given number of personnel than it could otherwise. However, undermanning makes it harder for a service to deploy combat units with their full complement of personnel. One possible use of undermanning that can avoid that problem involves what are known as cadre units. Such units are maintained with a small number of highly trained and experienced personnel but few junior personnel; when the need arises to expand the force, junior personnel can be added to the unit fairly rapidly (for instance, through a draft). That practice allows a service to increase its number of units much faster than it could if it created units from scratch. The Soviet Union used cadre units frequently, but the United States has historically preferred to have smaller numbers of readier units.

In the U.S. military, when undermanned units are required to deploy, they generally receive an infusion of personnel from other units to bring them up to their required numbers. Those transfers, referred to as
cross-leveling, alleviate the short-term problem of an individual unit’s being below required strength. But because the additional personnel must come from other units, cross-leveling is likely to leave nondeployed units even more short of personnel, causing a cascade of personnel shortages when the “donor” units in turn are required to deploy. (Integrating the transferred personnel into a new unit can also cause problems with that unit’s cohesion and readiness.) For example, during the late 1990s and early 2000s, combat brigades in the Army National Guard were often kept at only 80 percent to 90 percent of their required strength. Cross-leveling led to exactly that problem when the Army began deploying large numbers of National Guard brigades to Iraq in 2005.

Effects of Manning Levels on Readiness and Deployability. Most units in the U.S. military receive periodic ratings of their readiness for deployment. Under DoD’s assessment system, those ratings are based partly on the percentages of required personnel and equipment a unit has and on the training the unit has completed. Unit commanders have some leeway to adjust the ratings if they consider it necessary. Barring such adjustments, a unit must have a manning level of more than 90 percent to be considered fully ready for combat, and the more undermanned the unit is, the further it is considered from being ready.

Manning levels have a more direct connection with unit readiness than do other relevant factors, such as funding. Any given force structure requires a specific number of personnel to allow each unit to achieve a manning level of more than 90 percent. If the number of personnel available to the force is smaller than that specific number, some units will fall below the 90 percent threshold and be considered less than fully ready. DoD and the individual services commonly give higher priority to some units, manning them at higher levels than a service’s average and leaving other units at below-average levels. Such decisions change the distribution of personnel, but they do not change the average manning level overall.

A related characteristic used to describe units is deployability. Unlike a readiness rating, deployability is not a formal measure; rather, it refers to the real-world ease of actually deploying a unit to military operations. In general, a unit must be kept at more than 100 percent of its required manning level to be deployable, unless it receives an infusion of additional personnel.

Because the services have an incentive to overman units that are likely to be deployed, even a force that notionally has enough personnel to man all units at 100 percent may choose to overman deployable units and underman nondeployable ones (such as administrative organizations). The Army engaged in that practice during the 2000s, for example. Personnel are costly, so allocating them as scarce resources toward higher-priority uses and away from lower-priority uses can be a reasonable way to maximize the combat potential of a limited pool of people. However, such considerations mean that the readiness or manning of any given unit is not a reliable indicator of the readiness or manning of the whole force. A unit’s manning level may reflect the priority a service assigns to that unit more than it reflects the manning level of the service as a whole.

Special Topic

Deployment Times and Rotation Ratios

When making plans for units, the Department of Defense distinguishes between a unit at its home station (typically, its permanent base) and a unit deployed away from that station. Units can be deployed away from home for numerous reasons, such as training exercises. But the most significant types of deployment are those required to sustain U.S. forces overseas—either for military operations, such as the occupations of Iraq and Afghanistan, or for routine military presence in various parts of the world. The Navy and Marine Corps have a long-standing tradition of conducting routine peacetime deployments to provide presence overseas, whereas the Army and Air Force have not traditionally deployed units overseas during peacetime. (Military personnel stationed at some overseas bases, such as in Germany or Japan, are considered to be at their home station rather than on deployment.)

An important factor about current deployments is that DoD does not keep units away from their home station indefinitely. Instead, units return home periodically to limit the stress of deployments on personnel and their families, to repair and replace their equipment, to engage in training exercises, and so forth. Because of that policy, any long military operation or continuing overseas presence requires DoD to have other units available that it can deploy to replace returning units—a practice known as unit rotation. By contrast, in earlier conflicts, such as in Korea and Vietnam, the United States pursued a policy of individual rotation, in which ground and air units remained overseas indefinitely and individual personnel were cycled through them. DoD changed that practice because individual rotation was thought to lead to poor unit cohesion. With unit rotation, the need to alternate units between their home station and deployment means that the military’s forces can be thought of as a pool of units, divided into deployed and nondeployed subsets.

Each military service has its own policies governing how long its units can be deployed and how long they should remain at their home station. Such policies result in a theoretical maximum number of units that can be sustained on extended deployments at any point in time while adhering to a service’s policies. For example, the Army’s official policy for most of the past decade has been for units in the active component to be deployed for up to one year and then spend at least two years at their home station between deployments. (The Army was not able to meet those goals during the occupation of Iraq.) That policy implies that the Army can sustainably deploy one-third of its active-component force to extended operations overseas while the other two-thirds is at home—for a rotation ratio of home-station units to deployed units of 2 to 1. Deploying a unit over several rotation cycles through a theater in excess of that rotation ratio is generally considered unsustainable, in part because it affects the desire of the unit’s members to stay in the military.

Because of differences between types of units and the policies of the individual services, there is no single rotation ratio for all military forces. In general, the services expect units in the active component to be able to sustain more deployments than units in the reserve component. (In many cases, DoD prefers to minimize reserve-component deployments, if possible.)

When necessary, DoD can deploy more forces than suggested by rotation ratios, as it did for extended periods during the occupation of Iraq. Moreover, rotation ratios are the result of policy decisions and can be changed. Thus, in times of great military need, nothing prevents DoD from deploying as many units as are available for as long as necessary, as it did during World War II. However, the performance of units generally degrades over time when they are deployed, so such a decision can have drawbacks, which worsen as time goes on. But in an operation expected to be of limited duration (such as Operation Desert Storm in 1991), DoD can realistically deploy far more units than the sustainable level because it does not have to plan on sustaining the force involved in the operation indefinitely.

Given the need to have several units in the force to sustain a single deployed unit, if DoD has plans to keep large

12. The Army had a different standard for deploying reserve-component forces, which it also had trouble adhering to in Iraq.
13. Previously, DoD defined a rotation ratio as the ratio of the total number of units in the force to the number of units deployed. Thus, in the Army example, what is currently called a 2:1 ratio (two-thirds of the force at home station and one-third deployed) was previously called a 3:1 ratio (for every three units in the force, one was deployed).
numbers of forces deployed overseas, those plans will generally require larger forces than plans that only anticipate operations of a limited duration. For example, the Army grew to 45 active-component brigade combat teams (BCTs) and 28 National Guard BCTs in the mid-to late 2000s in order to sustain 20 deployed BCTs. (The 45 active-component BCTs provided 15 of the 20 deployed BCTs, and the 28 National Guard BCTs provided the other 5.) Currently, however, the need to sustain forces deployed overseas is not part of the Army’s planning strategy, which has allowed the service to shrink to a force of 30 active-component BCTs and 26 National Guard BCTs (which would be sufficient to sustain about 15 deployed BCTs).
Overview
The Department of the Navy (DoN) includes the active components of the Navy and Marine Corps, the Navy Reserve, the Marine Corps Reserve, and all federal civilians employed by the Navy or Marine Corps. It is the second-largest military department by number of military personnel and has the second-largest operation and support (O&S) budget. Because of its sizable acquisition funding, however, it has a larger total budget than any other military department.

The integration of the Navy and Marine Corps in a single department reflects the historical relationship between those two services. Marines originated as sea-based soldiers, who were transported on naval vessels, engaged in hand-to-hand combat during sea battles, and provided armed landing parties for operations on shore (as well as deterring mutinies). Although marines no longer routinely provide detachments for U.S. Navy surface combatants, the Marine Corps still defines itself in part as “soldiers of the sea, providing forces and detachments to naval ships and shore operations.”1 Unlike the other military departments, which are responsible for a single service, the Department of the Navy oversees the budgets of both the Navy and Marine Corps, and the two services are tightly integrated in a way that the other armed services are not. (That integration is discussed in detail in a special-topic entry on page 70.)

The Navy is the branch of the military responsible for providing all of the United States’ naval power and a significant portion of its airpower. The largest and most powerful conventional unit in the Navy is a carrier strike group (CSG), formerly called a carrier battle group. A CSG consists of an aircraft carrier, its associated aircraft (known as a carrier air wing), and a group of accompanying ships. The Navy’s long-term plans call for maintaining 11 carrier strike groups over much of the next 30 years.2

In addition to aircraft carriers, the Navy has about 100 surface combatants (see Table 3-1), which consist, in roughly decreasing order of size, of cruisers, destroyers, frigates, and littoral combat ships. The Navy also includes 10 amphibious ready groups (ARGs)—sets of three amphibious ships that transport Marine Corps ground and air units when they are deployed. Finally, the Navy maintains a fleet of submarines, including more than 50 attack submarines, which are responsible for attacking enemy surface ships and submarines, and 14 ballistic missile submarines, which are responsible for providing about two-thirds of the United States’ nuclear deterrent (as measured by the number of nuclear weapons they carry).

The Marine Corps is a hybrid service, with units that engage in combat on the ground and in the air. The Marine Corps organizes its forces into task forces, each with a command, ground combat, air combat, and support element. The largest such task force, a Marine expeditionary force (MEF), includes a ground combat division, an air wing, and a support group. The active component of the Marine Corps has three MEFs, including a total of three divisions, three air wings, and three logistics groups. The Marine Corps Reserve contains one division, one air wing, and one support group, although they are not organized into a fourth

2. At present, because of the planned gap between the retirement of one carrier and the commissioning of another, the Navy has only 10 carriers. For a detailed discussion of the Navy’s shipbuilding plans, see Congressional Budget Office, An Analysis of the Navy’s Fiscal Year 2016 Shipbuilding Plan (October 2015), www.cbo.gov/publication/50926. In addition, although the Navy’s plans call for maintaining 11 carrier strike groups, the service fields only 10 carrier air wings because the air wings rotate among carriers, and at any given time at least one carrier is undergoing an extended overhaul (and thus, does not need an air wing).
Marine expeditionary force. The MEFs, divisions, air wings, and logistics groups are not standardized units but instead vary in size and composition. For that reason, the Congressional Budget Office has based its analysis of the force structure of the Marine Corps on smaller, more standardized units: Marine infantry battalions and aircraft squadrons.

Like the other services, the Navy and Marine Corps also contain large numbers of support or administrative units. The vast majority of the Navy’s support units exist to support combat operations by ships and their aircraft, and the vast majority of the Marine Corps’ support units exist to support combat operations by MEFs. Nearly all of the administrative units in the Department of the Navy are responsible for creating and maintaining the Navy’s and Marine Corps’ combat and support units.

The Department of the Navy’s forces are distinctive not only for their number and variety of units but also for the way in which different types of forces routinely work closely together. The Army and Air Force each essentially focus on a single type of military power (ground combat or air combat), but the Navy and Marine Corps routinely integrate ships with aircraft (as in carrier strike groups), ships with ground combat units (as in amphibious ready groups), and aircraft with ground combat units (as in Marine expeditionary forces). Although all U.S. forces are expected to be able to operate jointly with other services, the routine and habitual integration of different types of military power within DoN goes beyond typical joint operations. For example, the Marine Corps has fewer artillery units to support its ground combat units than the Army does, in part because the Corps prefers to provide additional firepower (fire support) for its combat units by using its attack aircraft—aircraft that may well be based on Navy ships. In contrast, the Army has traditionally structured itself on the assumption that it must have substantial artillery capability in case Air Force aircraft are not available to provide fire support.

Besides conventional warships, MEFs, and forces organized in support of those units, the Navy and Marine Corps contain a number of smaller organizations that provide some highly specialized military capabilities. Prime examples include the Navy’s fleet of ballistic missile submarines; its fleet of maritime patrol aircraft, which patrol the oceans from land bases; special-operations forces, such as the Navy’s Sea, Air, and Land forces (known as SEALs); and construction battalions (known as Seabees). The Department of the Navy is also responsible for the U.S. sealift fleet, cargo ships that are used to transport equipment to overseas operations. Those ships, however, are largely operated by civilians employed by Military Sealift Command, and their operations are funded through revolving funds that are intended to let other organizations in the Department of Defense “pay” for their sealift needs using accounting credits internal to DoD.

Distribution of Navy and Marine Corps Personnel

The Department of the Navy has roughly 600,000 military personnel, making it less than two-thirds the size of the Army. According to the department’s plans for the 2017–2021 period, almost the same number of personnel will be in units devoted to overhead functions as in combat units; the smallest share will be in units that support

3. As noted in Box 1–1 on page 10, “support” can have a wide variety of meanings in military contexts. In this report, “support units” are units that would generally be used to provide support to major combat units. For example, although Marine Corps combat troops could be called on to defend a base being built by Navy engineers (as happened to some extent on the Pacific island of Guadalcanal during World War II)—and thus the combat troops could be said to be supporting the engineers—in general, Navy engineers are considered support units.

4. Many of the Navy’s fleet replenishment ships, which provide fuel and other supplies to ships on deployments, are also operated by civilians. However, in this analysis, CBO treats those replenishment ships as part of the indirect support for combat ships.

<table>
<thead>
<tr>
<th>Table 3-1. Number of Major Combat Units in the Navy and Marine Corps, 2017 and 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: Congressional Budget Office, using data from the Department of Defense’s 2017 budget request.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Aircraft Carriers</td>
</tr>
<tr>
<td>Carrier Air Wings</td>
</tr>
<tr>
<td>Surface Combatants</td>
</tr>
<tr>
<td>Attack Submarines</td>
</tr>
<tr>
<td>Amphibious Ships</td>
</tr>
<tr>
<td>Marine Corps Infantry Battalions Active component</td>
</tr>
<tr>
<td>Marine Corps Infantry Battalions Reserve component</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution of Navy and Marine Corps Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Department of the Navy has roughly 600,000 military personnel, making it less than two-thirds the size of the Army. According to the department’s plans for the 2017–2021 period, almost the same number of personnel will be in units devoted to overhead functions as in combat units; the smallest share will be in units that support</td>
</tr>
</tbody>
</table>

| CBO |
CHAPTER 3: DEPARTMENT OF THE NAVY
THE U.S. MILITARY’S FORCE STRUCTURE: A PRIMER

In this report, the number of direct personnel that CBO estimates for a given type of ship generally reflects the average number of Navy personnel that would be required to man such a ship for one year, not the number of billets on that type of ship. Although an individual ship being deployed has a fairly specific number of billets on board, the average number of personnel that the Navy needs to man a ship is influenced by several other factors. For example, ships are not deployed continuously and often have a reduced crew while in port or in dry dock for maintenance. In those instances, ships may require fewer personnel than they have billets. Conversely, some types of Navy ships are operated using a dual-crewing system, with two sets of crews for the same ship, and thus require more personnel than a single crew’s worth of billets.

Command Levels and Units
Navy ships are deployed either alone or in groups organized by task. The most common groups are carrier strike groups and amphibious ready groups, the two types of units that form the central organizational structures for the Navy. CSGs are built around a single aircraft carrier and its air wing and generally include five or six surface combatants and an attack submarine. Broadly speaking, the other ships in the group are intended to protect the aircraft carrier from attack, with the air wing providing the group’s offensive power (although those other ships also have offensive weapons, and the air wing also has defensive capabilities). ARGs consist of three amphibious ships to carry personnel, equipment, and the amphibious craft used to land forces on shore. The ships in an ARG consist of one large-deck amphibious ship (which also holds helicopters and aircraft) and two dock ships.

Rather than being deployed at all times, Navy ships progress through an operating cycle of deploying and returning to their home ports, undergoing maintenance, training new crews, and then deploying again. As a result, only a fraction of ships are actually deployed at any one time—typically, about 30 percent to 40 percent (depending on the type of ship, home port, and deployment location), although, when necessary, the Navy can increase that number in relatively short order. The Navy generally considers the number of ships deployed—its “forward presence”—to be a more meaningful measure of its contribution to national defense than the total number of ships in its fleet.

Marine Corps ground units are organized in largely the same recursive pattern as Army units, with largely the same command levels (described in Box 2-1 on page 19). The main differences are that the Marine Corps prefers the term “regiment” to “brigade,” lacks corps- and theater-level commands, and organizes its forces for combat in a different manner. Instead of grouping regiments into organizations similar to Army brigade combat teams and supporting them with units (such as air-support and logistics units) from higher command levels, the Marine Corps’ practice when deploying for combat operations is to assemble task forces with ground combat forces, air combat forces, and logistics units as

5. In addition, the Navy and Marine Corps have occasionally employed expeditionary strike groups, which are essentially ARGs with some additional surface combatants and an attack submarine included.

6. For a more thorough discussion of the Navy’s forward presence, see Congressional Budget Office, Preserving the Navy’s Forward Presence With a Smaller Fleet (March 2015), www.cbo.gov/publication/49989.
appropriate for the specific operation, as well as a headquarters element for the whole task force.

The major types of Marine Corps organizations are differentiated by the size of their ground combat component: A Marine expeditionary unit (MEU) is based on an infantry battalion and has about 2,200 personnel, a Marine expeditionary brigade (MEB) is based on an infantry regiment and has about 12,000 personnel, and a Marine expeditionary force is based on an infantry division and has about 50,000 personnel. Those infantry components are supplemented with other ground combat elements; for example, a MEU is not simply an infantry battalion but typically includes a platoon of tanks. The sizes of the air combat and logistics elements are scaled to the sizes of the ground combat component and the mission.

Both the Army and the Marine Corps have units that are organized permanently and units that are organized specifically for deployments, but the latter are much more common in the Marine Corps. The only Marine task forces that are permanently organized are MEFs; unless they are deployed, MEUs and MEBs are simply small headquarters elements with no other forces assigned to them. That practice can lead to some ambiguity: In different contexts, the term MEU can refer to a headquarters with no other units attached, to a specific task force assembled for a specific deployment, or to the general idea of a task force based around an infantry battalion—the sense in which the term is used in this report. Likewise, the fact that MEUs and MEBs are largely created on an ad hoc basis using units drawn from MEFs leads to some confusion about the total number of Marine Corps units.

Because of such differences in organization, direct comparisons between Army and Marine Corps units are difficult. Whereas Army units typically receive much of their support from higher echelons (division-, corps-, and theater-level assets), Marine Corps units are constructed as integrated task forces that include all of their essential support elements. As a result, a Marine task force is much larger than a comparably sized Army unit would be. In addition, the Army primarily employs brigade combat teams, whereas the Marine Corps more commonly uses MEFs and MEUs—the MEB, which is roughly equivalent in size to a brigade combat team, is a largely theoretical construct. If the two services used comparably sized units and if both treated supporting units as integral to their combat units, Army and Marine Corps units would be roughly similar in size and capability.

Like the other military services, the Navy and Marine Corps differentiate between the total number of fixed-wing aircraft they possess and the number of official “slots” for those aircraft in their force structure. For example, a squadron of 12 aircraft is intended to be able to operate that many aircraft at all times (in other words, it has 12 slots, called the primary aircraft authorization). But it may have more aircraft assigned to it (called the primary mission aircraft inventory) so the squadron can continue to operate at full strength even if some of those aircraft require extended maintenance or are otherwise unavailable. Similarly, the services have many aircraft that are not assigned to combat units—some are at maintenance depots, some are assigned to training squadrons, and some may be in storage to serve as replacements if aircraft are lost in the future. For those reasons, a service’s total aircraft inventory is greater than its primary aircraft authorization levels. (For instance, the United States purchased 160 EA-18G electronic attack aircraft but maintains about 95 slots for EA-18Gs in the force structure.) In this report, all aircraft numbers represent primary aircraft authorizations.

Strengths and Limitations of Navy and Marine Corps Forces

The many different types of units that are part of the Department of the Navy have their own strengths and weaknesses (as described in the sections below about major elements of the force structure). But as a whole, those units constitute a highly capable force. The Navy’s surface combatants, for example, are widely considered to be exceptionally powerful units—generally larger, with bigger and more capable loads of weapons, and with more sophisticated sensors and electronics than the surface combatants of any other navy. Those ships often escort the Navy’s aircraft carriers, which are also larger, with a greater complement of aircraft, than those of any

7. Many other differences between the two services’ units would remain, however. For instance, the Army has no fixed-wing combat aircraft, whereas the Marine Corps has a large inventory of such aircraft. (The Army is prohibited from having fixed-wing combat aircraft by interservice agreements drawn up shortly after the Air Force was created from the Army Air Corps in the 1940s. However, the Army uses fixed-wing aircraft for purposes other than combat, such as reconnaissance and transport.)
other navies. The vast majority of other navies in the world resemble the U.S. Coast Guard more than they do the U.S. Navy, in that they focus on patrolling their country’s coastlines rather than on projecting power overseas. With the probable exception of China’s navy in the western Pacific Ocean, no other nation’s navy appears intended to challenge U.S. naval supremacy. Perhaps as a result, the United States has not faced any significant naval combat since World War II (although the Soviet navy was prepared to engage U.S. and NATO naval forces during the Cold War).

For its part, the Marine Corps—though smaller than the Army—is considered one of the most capable ground combat organizations in the world. Similarly, DoN’s fleet of aircraft—though smaller than the Air Force—is thought to be one of the world’s most capable air combat organizations. Both of those forces have been used extensively in U.S. combat operations since World War II.

Because the Department of the Navy includes what are effectively among the world’s largest and most powerful air forces and armies, the department’s naval operations have a combined-arms character. Most DoN missions or operations include contributions from the department’s ships, aircraft, and Marine Corps ground forces. Moreover, the United States has faced no serious naval threats since the end of the Cold War in the early 1990s, so in major conflicts since then, Navy and Marine Corps units have been used almost exclusively to influence ground operations or events ashore. Aircraft and Marine ground units are often DoN’s most powerful tools for influencing events on land, which highlights the flexibility of the department’s capabilities.

In the past, the United States has generally had a lower threshold for using air and naval forces in combat than for using ground forces. Naval forces can be stationed in international waters—and thus do not require cooperation from other countries—but are still capable of launching air strikes or cruise missile strikes against potential targets. In addition, they can respond rapidly, provide a relatively visible threat, and are fairly well protected from any reprisals (both by distance from shore and by their own defensive weapons). For those reasons, naval forces have often been the United States’ preferred first option in crisis situations or in smaller interventions. In such situations, the United States has sometimes also employed amphibious ready groups, whose ability to land ground combat units on shore can heighten the perceived threat of a U.S. invasion. (However, the relatively small size of the ground combat forces included in an ARG—one combat battalion, with air and logistics support—makes their use as a threat credible only against fairly weak opponents.)

Using naval forces (or the Air Force) to conduct air and cruise missile strikes on opposing states, without also committing ground combat forces, has had mixed results in achieving the United States’ goals. In some cases—such as operations against Libya in the 1980s and Serbia in the 1990s—air and cruise missile strikes may have been enough to achieve U.S. aims. But in many other cases—including the U.S. bombing of North Vietnam during the 1960s and 1970s and U.S. cruise missile attacks against Afghanistan and Sudan in 1998 (Operation Infinite Reach)—aerial campaigns without the use of ground forces did not prove effective at accomplishing U.S. goals. (For a discussion of those and other past military operations, see Appendix C.)

By comparison, the United States has generally been successful in modern times in using amphibious forces to invade opposing countries. Only small and less capable states are vulnerable to an entirely amphibious invasion, however; in recent decades, the United States has taken part in few operationally significant amphibious assaults against major opponents. In major conflicts with such

9. Cruise missiles are essentially small, unmanned, single-use aircraft that have wings, carry a warhead, and fly at the same altitudes as manned aircraft (as opposed to ballistic missiles, which are guided rockets that loft their warheads high in the atmosphere or above the atmosphere).

10. As an alternative, during the planned invasion of Haiti in the 1990s (referred to as Operation Uphold Democracy), the United States deployed an Army division aboard two aircraft carriers. That force, much larger than an ARG, created a very credible invasion threat that may have contributed to the Haitian government’s acceptance of U.S. demands.

11. Before the Marine Corps began using helicopters as part of its amphibious force, only coastal areas were vulnerable to U.S. amphibious invasions. That is no longer the case—for example, the Marines participated in the invasion of land-locked Afghanistan in 2002—although some areas located far inland remain unreachable by U.S. amphibious forces.

8. The difference in size and capability between U.S. and other aircraft carriers is so great that most other nations’ aircraft carriers are, in fact, more comparable to U.S. amphibious assault ships (which the Navy does not call aircraft carriers).
opponents (including the 1991 and 2003 wars with Iraq), the Marine Corps was deployed in essentially the same manner as the Army—as an additional ground force—rather than conducting an amphibious assault. The Marine Corps’ amphibious capability has been used most in some of the Corps’ least demanding operations, including peacetime missions and operations against opponents such as Grenada or Somalia, which were not capable of presenting concerted resistance.

DoD believes that the most likely future scenarios for U.S. naval combat involve operations conducted close to an enemy landmass. Such “littoral” operations pose special challenges for naval forces: They allow an enemy’s land-based forces to affect naval operations (for example, by attacking ships with land-based aircraft or missiles), while making it harder for naval forces to respond (for instance, by limiting their ability to maneuver, making it more difficult for them to find and destroy targets, and exposing them to mines such as those that damaged the USS Princeton and USS Tripoli during the 1991 war with Iraq). A potential conflict between the United States and China over the status of Taiwan, for example, would most likely involve China using land-based aircraft, cruise missiles, and ballistic missiles to try to keep the Navy out of the immediate area of operations. And a potential conflict in the Strait of Hormuz would most likely see Iran using submarines and land-based cruise missiles to try to deny Navy and commercial ships safe passage through the narrow waters of the strait (see Appendix C).

The lack of significant naval threats for the past two decades and the fact that, in major conflicts, Navy and Marine Corps units have usually been used to affect operations on land have led analysts to differing conclusions. Some argue that if the United States had invested fewer resources in naval forces and more in ground and air forces, it would have had more effective combat power at its disposal in all of its major combat operations since World War II. Other analysts, however, assert that the United States has not faced any major naval competitors precisely because the U.S. Navy’s power has deterred other nations from having naval ambitions (because building a fleet capable of competing with the U.S. Navy would be prohibitively expensive). Still others point out that the United States, unlike its adversaries, has been able to enjoy the benefits of uncontested control of the sea lanes, such as the ability to use cargo ships to transport ground forces to distant theaters of operations. Those benefits from deterrence and control of the sea lanes may be greatest when the U.S. Navy is most dominant, meaning that some of the advantages of naval dominance may not be readily apparent, despite their importance. (Many proponents argue that the deterrent effect of U.S. naval power provides a significant global public good by suppressing naval competition between other countries and ensuring freedom of navigation for civilian shipping.)

In addition to their roles during conflicts, naval forces perform a variety of peacetime missions. For example, they are routinely used to evacuate noncombatants from conflict zones, to provide humanitarian and disaster relief, and to conduct antipiracy patrols. Some advocates of naval forces also suggest that the Navy, by being physically present in distant locations around the world, provides a form of visible U.S. presence that is more effective at reassuring friends and allies about U.S. security commitments—and at deterring U.S. opponents—than are Army and Air Force units, which are often farther away. The vast majority of the Navy’s operations today are routine deployments of ships around the globe to provide that presence.

What This Chapter Covers
The rest of this chapter presents CBO’s analysis of the following major elements of the Navy’s and Marine Corps’ force structure (listed here with the percentage of the Department of the Navy’s O&S costs that they account for):

- Aircraft carriers (21 percent); see page 52.
- Surface combatants (14 percent); see page 56.
- Attack submarines (7 percent); see page 59.
- Amphibious ships (9 percent); see page 61.
- Marine Corps infantry battalions (33 percent); see page 65.
- Other units and activities of the department (16 percent), such as ballistic missile submarines, construction engineers, and special-operations forces; see page 68.
This chapter also examines four topics of special concern to the Department of the Navy:

- The integration of the Navy and Marine Corps; see page 70.
- The ability to conduct forcible-entry operations (which involve gaining access to enemy territory that cannot be reached from adjacent land areas); see page 72.
- The types of aircraft used by the Navy; see page 74.
- The types of aircraft used by the Marine Corps; see page 77.
Major Element of the Force Structure

Aircraft Carriers

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>6,590</td>
<td>3,200</td>
<td>760</td>
<td>2,620</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>1,180</td>
<td>470</td>
<td>180</td>
<td>530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>4,860</td>
<td>1,630</td>
<td>1,300</td>
<td>1,930</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>910</td>
<td>330</td>
<td>200</td>
<td>390</td>
</tr>
</tbody>
</table>

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

Aircraft carriers serve as platforms for flight operations by their air wings and also form the nucleus of carrier strike groups, or CSGs. (See Figure 3-1 on page 54 for the size and organization of a CSG.) All of the Navy’s current and planned aircraft carriers are nuclear powered, meaning that they can operate for long periods without needing to be refueled. In addition, all of them are large enough and have the necessary design features to allow sustained air operations by fixed-wing aircraft that are not capable of performing short takeoffs and vertical landings. (Those design features include catapults to launch aircraft, arresting wires to stop planes when they land, and angled decks.) On its own, an aircraft carrier has a limited ability to defend itself from attacks by missiles, aircraft, submarines, or other ships. Its air wing and the other ships in its CSG are responsible for helping to defend the carrier.

The majority of the aircraft in a carrier air wing are F/A-18 multirole fighters, which are capable of defending against aerial threats as well as attacking targets at sea or on land. Those fighters are comparable in most respects to the Air Force’s tactical aircraft and can carry most of the advanced munitions that Air Force strike aircraft do. The rest of the aircraft in a carrier air wing largely support the operations of the carrier and the F/A-18s.

Current and Planned Structure. The Navy will field 11 aircraft carriers and 10 carrier air wings in 2017. In its 2017 budget request, it indicated no plans to change the number of carriers through 2021, although it proposed eliminating one carrier air wing. Each air wing consists of eight squadrons of fixed-wing aircraft and helicopters. Together, the Navy’s aircraft carriers and associated air wings account for about 21 percent of the Department of the Navy’s total operation and support funding.

Purpose and Limitations. The Navy’s carrier force gives the United States the ability to strike a wide variety of targets across the world by air, particularly in places where the U.S. military does not have its own air bases on land or access to other countries’ air bases. The range of Navy fighter aircraft (and the ability to use aerial refueling)

12. The majority of the world’s aircraft carriers do not have those features and more closely resemble the Navy’s LHA amphibious assault ships. They are smaller, not nuclear powered, and do not have catapults, arresting wires, or angled decks, so they are only capable of operating a smaller air wing that consists of helicopters and specialized short-takeoff, vertical-landing aircraft.

13. The Navy is currently purchasing the C model of the F-35 Joint Strike Fighter to replace the older C and D models of the F/A-18.

14. When this report was published, the Navy had 10 active carriers because of a gap between the retirement of the USS Enterprise and the commissioning of the USS Gerald R. Ford. For a detailed discussion of the Navy’s shipbuilding plans, see Congressional Budget Office, An Analysis of the Navy’s Fiscal Year 2016 Shipbuilding Plan (October 2015), www.cbo.gov/publication/50926.

15. The Navy plans to keep the aircraft associated with that wing by distributing them to other air wings.
means that carrier air wings can strike targets relatively far inland, not just along coasts. In addition, the mobility of aircraft carriers allows the United States to reposition them to assist in almost any likely combat scenario. Experience has also shown that carrier-based aircraft are among the most powerful antiship weapons and that surface combatants exposed to attack from aircraft are extremely vulnerable (although the United States has not had many occasions to use that capability since World War II).

The main limitation of the carrier force is that carrier aviation is a relatively expensive way to employ tactical aircraft in operations in which air bases on land are available to the United States. The U.S. military has invested heavily in naval aircraft and has used them in every major conflict since World War II (at times, perhaps, because the assets existed rather than because they were the only assets that could perform a particular mission). In many of those conflicts, however, the unique value of aircraft carriers—to provide bases in otherwise inaccessible locations—was not fully demonstrated because the United States had access to air bases on land for at least part of the conflict.

A possible further drawback of aircraft carriers is that during combat operations, they could face a number of threats that might make them vulnerable, despite the defensive capabilities of the other ships in a strike group. Navy ships have not faced sustained attacks since World War II, however, so it is difficult to assess how vulnerable aircraft carriers would be in a conflict in which they came under heavy attack from aircraft, cruise missiles, ballistic missiles, or submarines. Analysts have long debated how well aircraft carriers could survive attack in a contested naval environment (such as was possible in a conflict with the Soviet Union or might be possible in a future conflict with China).

Although no adversary has successfully attacked a U.S. carrier since 1945, the importance of aircraft carriers for the United States’ ability to project power has created strong incentives for hostile states to develop weapons and tactics to counter those ships and their aircraft. For example, some states are developing high-speed antiship cruise missiles and antiship ballistic missiles in an effort to penetrate the air defenses of carrier strike groups. In turn, the emergence of those more sophisticated weapons has led the Navy to develop responses, including improvements in air and missile defenses.

Past and Planned Use. For more than 70 years, the United States has used carrier-based aircraft in all of its major combat operations as well as in a number of smaller operations (see Appendix C). In many cases, those aircraft have been the most rapid and flexible form of military response available to the United States. Aircraft carriers have also been employed, though to a much more limited degree, for some nontraditional missions, such as disaster response. In addition, plans for a U.S. invasion of Haiti in the mid-1990s (called Operation Uphold Democracy) envisioned using two aircraft carriers as bases for an air assault by an Army division, with the division’s helicopters taking the place of the carriers’ normal air wings. (The invasion was never carried out because a diplomatic solution to the crisis was found.) The U.S. military seems likely to continue to use aircraft carriers in future conflicts, unless a potential adversary proves capable of presenting an unacceptably dangerous threat to carrier strike groups (as some analysts believe China might in a future conflict in the South China Sea).

The Navy’s goals for the size of the carrier fleet are based on its analysis of wartime scenarios as well as on its goals for having ships deployed overseas (providing what is commonly called forward presence). In major U.S. military operations since the end of the Cold War—such as the conflicts in Kuwait in 1991, in Afghanistan in 2001, and in Iraq in 2003—the Navy eventually provided five to seven aircraft carriers. Maintaining a fleet of 11 carriers would usually allow 5 of them to be available within 30 days for a crisis or conflict (the rest would be undergoing scheduled maintenance or taking part in training exercises and would be unready for combat). Within 90 days, the Navy would generally have seven carriers available. A larger carrier force would be able to provide more ships for a conflict, and a smaller force fewer.

16. In some instances, even if the United States has access to air bases on land, the bases do not have enough capacity to support an entire U.S. air operation. In such cases, having carrier aviation allows the United States to station more tactical aircraft in a theater of operations than it would otherwise be able to do. (That advantage tends to diminish over the course of a long conflict, however, because Air Force engineers can substantially improve the size and capability of friendly nations’ air bases.) Aircraft carriers can also provide the United States with flexibility in cases in which regional governments do not allow U.S. forces to freely use local air bases or travel through local airspace.
During peacetime, the carrier fleet conducts routine patrols around the world, providing forward presence to reassure the United States’ friends and allies and deter potential aggressors. Given the Navy’s normal operating cycles for ships and crews, the current force of 11 carriers—one of which is based in Japan—can provide the equivalent of two carriers deployed year-round and a third carrier deployed for eight months of the year. (At any given time, the other carriers are transiting to or from their deployment areas, engaging in training activities, undergoing routine maintenance, or being overhauled.) Having more carriers, longer deployments, or more carriers based overseas would increase the fleet’s capability to provide forward presence, whereas having fewer carriers or shorter deployments, or withdrawing the carrier based in Japan, would decrease that capability.\(^{17}\)

\(^{17}\) For a more thorough discussion of the Navy’s forward presence, including deployment cycles and approaches to increase forward presence, see Congressional Budget Office, *Preserving the Navy’s Forward Presence With a Smaller Fleet* (March 2015), www.cbo.gov/publication/49989.
Figure 3-1. Continued

Ships, Aircraft, and Personnel in a Navy Carrier Strike Group

Source: Congressional Budget Office, using data from the Department of Defense.

The number of personnel shown here for the various ships reflects the Navy’s official crew size (number of billets) for each type of ship rather than (as in the entries for those ships) the average number of personnel that would be required to man such a ship for one year.
The Navy divides its fleet of surface combat ships into large surface combatants (destroyers and cruisers) and small surface combatants (littoral combat ships and FFG-7 frigates, a type of ship the Navy retired in 2015). The larger combatants are powerful ships equipped with the Vertical Launch System (VLS), which allows them to use several different kinds of missiles to attack targets in the air, at sea, or on land. The smaller combatants do not have the VLS but instead carry a variety of smaller and more specialized weapons intended mainly for defensive purposes, particularly antisubmarine warfare. Most of the Navy’s surface combatants carry one or two SH-60 Seahawk helicopters to assist in various missions.

Since World War II, the Navy’s surface combatants have evolved from being vessels distinguished primarily by the size of their main guns—which in turn largely determined the size of the ships—to being versatile platforms for several weapon systems. Since the introduction of the VLS in the early 1980s, the Navy’s large surface combatants have been differentiated mainly by their sensors and intended combat specialties rather than by their size or type of weapons. Ships equipped with the VLS can carry an interchangeable set of standard munitions, including Tomahawk cruise missiles, ASROC antisubmarine weapons, and Standard air-defense missiles. (Such ships can also carry Harpoon antiship missiles, which use a launch system other than the VLS.) In addition, the Navy has a limited number of Standard missiles that can intercept short- and medium-range ballistic missiles, although that number is expected to grow. Similarly, the Navy’s small surface combatants have become versatile ships primarily intended to defend larger ships against attack by submarines and small boats and to replace the Navy’s mine countermeasures ships. All of the Navy’s surface combatants have enough defensive capability that they can operate independently during normal peacetime deployments.

Current and Planned Structure. In 2017, the Navy will field 104 surface combat ships of various sizes, including DDG-51 and DDG-1000 destroyers, CG-47 cruisers,
and littoral combat ships (LCSs). That total number is set to increase to 125 by 2021 as new DDG-51s, DDG-1000s, and LCSs are added to the fleet. Together, surface combatants account for about 14 percent of the Department of the Navy’s total operation and support funding.

Purpose and Limitations. A large share of the Navy’s surface combatants are used in carrier strike groups to protect aircraft carriers. Although numbers vary at times, a carrier strike group generally includes five or six surface combatants, in addition to the carrier and an attack submarine. Surface combatants could also be used to escort and defend amphibious ready groups in some scenarios, but it is not currently normal peacetime practice for the Navy to deploy surface combatants with those groups.

In addition, surface combatants are frequently deployed on their own or in small groups (called surface action groups) either to defend an area against ballistic missiles or to allow the Navy’s limited number of ships to provide a greater amount of forward presence in places of interest to the United States. Missile defense missions and forward presence missions are similar in many respects, though they differ in some ways. In both cases, the essence of the deployment is simply to be available in some area. However, the Navy’s ability to carry out missile defense missions depends on the limited number of large surface combatants that have ballistic missile defense capability, and the locations of those missions are determined by the possible flight paths that missiles could travel between an adversary and its potential targets.

The main limitation of surface combatants is that they have less capability than aircraft carriers or amphibious ships to affect ground combat operations, which have dominated the major conflicts in which the United States has engaged for the past 70 years. Although large surface combatants can launch Tomahawk cruise missiles, the Navy has a significant capability to fire cruise missiles from other vessels (such as attack and guided missile submarines), and most U.S. combat operations rely on tactical aircraft for the vast majority of strikes on ground targets. Surface combatants also have guns that can provide firepower, but those guns have relatively short ranges, which severely limits their ability to affect combat operations on land. The DDG-1000 class of destroyers that the Navy is commissioning will have an advanced gun system with a longer range than other naval guns in the fleet today, but in many scenarios that range will still not be long enough to make a significant contribution to ground combat. (In addition, the Navy plans to buy only three DDG-1000 destroyers, so the availability of those longer-range naval guns will be quite limited.)

In general, surface ships face a number of potential threats in naval combat operations that might make them vulnerable. However, because the United States has engaged in very little naval combat since World War II, it is difficult to gauge how vulnerable the Navy’s surface ships would be if they came under heavy attack from aircraft, cruise missiles, ballistic missiles, or submarines. Some events—such as the war between the United Kingdom and Argentina over the Falkland Islands in 1982 and the attack on the USS Stark by a missile launched from an Iraqi jet in 1987—suggest that surface ships may be extremely vulnerable to modern weaponry. Moreover, during Operation Desert Shield in the early 1990s, two U.S. surface combatants hit Iraqi mines, which suggests that older naval mines can be effective against Navy ships. Similarly, in 2000 a boat filled with explosives attacked the USS Cole in a port in Yemen, indicating that small boats may be capable of inflicting great damage on surface combatants operating close to shore (for a discussion of those and other past military operations, see Appendix C). However, the Navy has taken a number of steps to respond to those potential threats, and it is difficult to judge how successfully U.S. surface combatants might fare in similar situations in the future.

Past and Planned Use. In practice, the most common contributions that surface combatants have made to U.S. combat operations in recent decades have been as platforms for launching Tomahawk cruise missiles to

19. Cruise missiles are most frequently used at the beginning of a conflict, when the United States is typically trying to destroy an enemy’s air defenses. Cruise missiles are considered a safer option than aircraft for strike missions when enemy air defenses are still capable of threatening the lives of U.S. pilots.
strike targets on land and as protectors of aircraft carriers and amphibious ships. Those roles reflect the nature of recent conflicts: Iraq and Afghanistan had no significant naval forces to engage. In possible future conflicts, however, the ability of U.S. cruisers and destroyers to provide missile defense and air defense could be significant. For example, scenarios involving possible future conflicts between the United States and China over the status of Taiwan would probably require the Navy’s large surface combatants to defend Taiwan from attack by ballistic missiles and to defend U.S. carriers from attack by aircraft, ballistic missiles, and cruise missiles. Similarly, scenarios involving attempts by Iran to restrict shipping through the Strait of Hormuz would probably require that large surface combatants defend against aircraft and missiles and that surface combatants of all sizes defend against submarines and small boats (see Appendix C).

Analyses of such wartime scenarios have led the Navy to set a goal of having 88 large surface combatants. Although a significant portion of the Navy’s cruisers and destroyers are dedicated to protecting aircraft carriers, they also carry out a variety of independent operations and other missions, such as providing regional ballistic missile defense in Europe and Northeast Asia. Major reductions in the force of large surface combatants (without similar reductions in the force of aircraft carriers) might imperil the Navy’s ability to provide escorts to carriers, but small or moderate changes to the number of large surface combatants would not, although they might affect the Navy’s ability to conduct other missions or to provide forward presence in peacetime.

With a planned force of 88 large surface combatants—including 9 based in Japan and 4 based in Spain—the Navy could have approximately 28 of those ships operating in overseas areas at any one time, given its normal operating cycle. Buying more ships, conducting longer deployments, or basing more ships overseas would increase that number, and the reverse would decrease it.20

The Navy’s plans for small surface combatants call for having a force of 52 by 2028. With the retirement of FFG-7 frigates, that force will consist entirely of littoral combat ships—including, in the future, a new class of improved LCSs that the Navy plans to designate as frigates. LCSs (and the future frigates) use a scheme of rotating crews that would allow the Navy to keep 26 of those 52 small surface combatants forward deployed at any given time.

20. For a more thorough discussion of the Navy’s forward presence and the factors that affect it, see Congressional Budget Office, *Preserving the Navy’s Forward Presence With a Smaller Fleet* (March 2015), www.cbo.gov/publication/49989.
Major Element of the Force Structure

Attack Submarines

<table>
<thead>
<tr>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>190</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>140</td>
<td>70</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

Because of data limitations, the Congressional Budget Office could not estimate costs for different classes of attack submarines using the framework of this analysis. “Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

The Navy’s attack submarines are large vessels powered by nuclear reactors, which allow them to operate underwater for long periods with no practical limits on their range. They are armed with a variety of weapons, such as torpedoes for destroying surface ships and other submarines and Tomahawk cruise missiles for striking targets on land. In addition, some U.S. attack submarines have been fitted with specialized equipment allowing them to deliver teams of special forces ashore. (Attack submarines are not capable of performing some naval missions, such as engaging aerial targets or providing missile defense.)

Current and Planned Structure. The Navy will field 51 attack submarines (which consist of Los Angeles, Seawolf, and Virginia class submarines) in 2017. That number is expected to rise to 52 the following year but return to 51 by 2020. Attack submarines account for about 7 percent of the Department of the Navy’s total operation and support funding. (The Navy operates other types of submarines, such as ballistic missile and guided missile submarines. Those types are discussed in an entry, “Other Department of the Navy Units and Activities,” on page 68.

Purpose and Limitations. The Navy’s fleet of attack submarines evolved largely to ensure the United States’ ability to use sea lanes around the world freely for military and civilian shipping during conflicts. For years, that fleet’s main adversary was the Cold War-era Soviet navy, which built large numbers of submarines in an effort to prevent the United States from transporting military forces to Europe by ship in the event of a conflict there. Another major mission for the Navy’s attack submarines was to hunt for and destroy Soviet ballistic missile submarines (those carrying strategic nuclear warheads), including submarines operating beneath the Arctic ice pack.

In contrast to the Navy’s nuclear-powered submarines, many of the United States’ potential adversaries have diesel electric submarines. Those submarines use diesel engines to charge batteries, which can then power the submarines for relatively short periods while submerged. Diesel electric submarines are often considered best suited to coastal defense, for two reasons. First, the need to carry diesel fuel limits their range, and second, the need for an air supply (generally obtained either by surfacing or by raising an air-intake snorkel periodically) limits their ability to stay underwater. Diesel electric submarines can be more tactically effective than nuclear submarines, because battery power is quieter underwater than a nuclear reactor. That quietness gives diesel electric submarines an advantage in detecting, or avoiding detection by, enemy warships and submarines.

The Navy is generally very secretive about its submarine operations. Nevertheless, it has asserted that the stealthy nature of attack submarines makes them excellent intelligence-gathering assets, capable of observing foreign nations while undetected. A lack of unclassified information, however, makes it difficult to assess the value of that mission or the number of submarines that it requires. At the same time, the stealthy nature of attack submarines means that they are not useful for providing visible forward presence overseas, except when conducting port visits in other countries.

The main limitation of the attack submarine force is that it has relatively little ability to directly affect ground combat operations, which have dominated the United States'
military conflicts since World War II. Although attack submarines can launch Tomahawk cruise missiles, the Navy has an enormous capability to fire cruise missiles from other vessels, such as surface combatants and guided missile submarines. Moreover, most U.S. combat operations rely on tactical aircraft for the vast majority of strikes on ground targets.\(^{21}\) Attack submarines can sometimes be used to deploy special forces covertly, but that capability is often more useful in peacetime than during major combat operations, when the United States has numerous methods for inserting special forces into a theater (including by fixed-wing aircraft or helicopters).

There is little reason to believe that the Navy’s attack submarine fleet is particularly vulnerable to any type of threat in the current military environment. By their nature, submarines are the most difficult types of naval vessels to detect and destroy, and the greatest potential threat to any submarine is generally another submarine. Some analysts have questioned how U.S. attack submarines might perform against advanced diesel electric submarines in shallow waters, such as those of the Persian Gulf, where diesel electric submarines have some tactical advantages. But the United States has various options for attacking and defeating such submarines, including land-based patrol aircraft, ship-based helicopters, and surface combatants.

Past and Planned Use. In recent decades, the most common roles that attack submarines have played in U.S. combat operations have been as platforms for launching Tomahawk cruise missiles at ground targets, for conducting surveillance, or for collecting intelligence. However, those roles reflect the fact that Iraq and Afghanistan had no significant naval forces to engage. In conflicts that the United States might face in the future, the ability of attack submarines to intercept an enemy’s naval forces and commercial shipping close to the enemy’s coastline could be important in the conduct of the conflict. For instance, scenarios involving conflicts between the United States and China over the status of Taiwan could easily hinge on the possibility of a Chinese amphibious invasion of Taiwan, in which case the ability of U.S. attack submarines to destroy Chinese vessels would be critical. (For a discussion of DoD’s planning scenarios for those and other areas, see Appendix C.) Similarly, scenarios involving attempts by Iran to restrict shipping through the Strait of Hormuz might require U.S. attack submarines to destroy Iranian submarines (which would most likely be an important part of Iran’s strategy to deny the United States access to the Persian Gulf).

On the basis of such wartime scenarios, the Navy’s stated goal for the size of the attack submarine force has remained at 48 for the past decade. The Navy’s analysis is based on classified information, however, so it is not clear what effects increasing or decreasing the size of that force would have on the Navy’s ability to achieve its wartime objectives.\(^{22}\)

In peacetime, attack submarines’ main missions are conducting surveillance, gathering intelligence, and supporting carrier strike groups. The Navy aims to have at least 10 attack submarines deployed overseas at any given time for various peacetime operations, which may also include supporting the activities of special-operations forces. The Navy currently bases three of its attack submarines in Guam, although that number will soon rise to four. The standard operating cycle for attack submarines—one 6-month deployment during a 24-month period—means that a submarine based in the continental United States is deployed overseas for an average of about 3 months per year (6 months over two years), whereas a submarine based in Guam is deployed overseas for about twice that amount of time. The Navy could keep more attack submarines overseas at any given time if it had a larger force, deployed submarines for longer periods, or stationed more of them at overseas bases. Conversely, a smaller force, shorter deployments, or fewer submarines based outside the United States would reduce the number of attack submarines operating overseas at any one time.

\(^{21}\) Cruise missiles are most frequently used at the beginning of a conflict, when the United States is typically trying to destroy an enemy’s air defenses. Cruise missiles are considered a safer option than aircraft for strike missions when enemy air defenses are still capable of threatening the lives of U.S. pilots.

\(^{22}\) For a detailed discussion of the Navy’s shipbuilding plans, see Congressional Budget Office, *An Analysis of the Navy’s Fiscal Year 2016 Shipbuilding Plan* (October 2015), www.cbo.gov/publication/50926.
Major Element of the Force Structure

Amphibious Ships

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel per Unit</td>
<td>1,450</td>
<td>710</td>
<td>170</td>
<td>580</td>
</tr>
<tr>
<td>Annual Cost per Unit (Millions of 2017 dollars)</td>
<td>270</td>
<td>110</td>
<td>40</td>
<td>120</td>
</tr>
</tbody>
</table>

Because of data limitations, the Congressional Budget Office could not estimate costs for different classes of amphibious ships using the framework of this analysis. The costs shown here are average costs for ships only (they do not include the costs of the Marine units that would deploy on the ships).

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

As their name implies, amphibious ships are designed to conduct operations that involve moving from sea to land—specifically, delivering forces into hostile territory from friendly ships. The Navy’s amphibious ships generally operate in amphibious ready groups (ARGs), each of which is composed of three ships (see Figure 3-2):

- One large-deck amphibious assault ship (an LHA or LHD class ship), which is capable of carrying helicopters, tilt-rotor aircraft, and specialized fixed-wing aircraft that can perform short takeoffs and vertical landings. Those ships also have well decks that allow them to launch and recover Navy landing craft and Marine Corps amphibious assault vehicles.

- Two dock ships (one LPD and one LSD class ship), which have large cargo holds and the ability to launch and recover Navy and Marine Corps landing craft and amphibious assault vehicles.23

An amphibious ready group is designed to carry a single Marine expeditionary unit (MEU), which consists of an infantry battalion plus air and logistical support units, with a total of about 2,200 personnel and 30 aircraft, both rotary-wing (helicopters and tilt-rotors) and fixed-wing aircraft.24 Amphibious ships have no meaningful offensive capability of their own, but they have the capability to defend themselves against aerial and naval threats.

Current and Planned Structure. The Navy plans to field 33 amphibious ships during the 2017–2021 period—enough for 10 complete amphibious ready groups now and 11 complete groups once an 11th large-deck amphibious assault ship is delivered in 2024. (Those figures do not include 2 command ships that are considered part of the amphibious fleet in the Department of Defense’s Future Years Defense Program.) Amphibious ships account for about 9 percent of the Department of the Navy’s total operation and support funding.

The Navy’s three main types of amphibious ships vary greatly in size and capability. However, data from DoD do not distinguish between the different types, so for this analysis, CBO reports average values for personnel and costs for amphibious ships, even though none of the different types of ships exactly match those average values. Nevertheless, because the Navy generally buys amphibious ships in fairly constant ratios of the different types of ships, large changes in the number of amphibious ships in the fleet will result in the same approximate average cost

23. The two classes of dock ships largely serve the same function, but they differ somewhat in their ability to carry equipment and personnel. LPD class ships, which are larger than LSD class ships, can carry helicopters or V-22 tilt-rotor aircraft as well as landing craft. For more information about the differences between types of amphibious ships, see U.S. Navy, “America’s Navy: The Amphibs” (accessed March 22, 2016), www.navy.mil/navydata/ships/amphibs/amphib.asp.

24. Marine expeditionary units are discussed in more detail in the entry “Marine Corps Infantry Battalions,” on page 65. Although the ships that make up an amphibious ready group carry a MEU when they are deployed at sea, it is not correct to infer that there is one MEU per ARG. MEUs are not assigned to ARGs when they are not deployed, and the Marine Corps maintains 7 MEU headquarters, although the Navy can field 10 ARGs. Rather than being a fixed set of units, MEUs are task-organized units that are primarily composed of units drawn from other Marine Corps commands.
Purpose and Limitations. Unlike past amphibious operations, which relied entirely on waterborne landing craft, modern operations generally involve delivering personnel and equipment to a target area by air as well as by water. For smaller operations that do not require transporting heavy equipment, ARGs can conduct the entire delivery operation with the MEU’s aircraft, giving modern amphibious operations much greater range and flexibility than past operations.

ARGs (and their associated MEUs) are also capable of performing a wide variety of missions in peacetime. They can be used to evacuate embassy personnel and other noncombatants from a conflict zone, and they are considered extremely useful for humanitarian assistance, disaster response, antipiracy missions, and other types of operations that do not involve major conflicts.

The main limitation of the amphibious force is that a single MEU is not large enough to significantly affect most major combat operations. Although several ARGs could be combined to land a larger force, the conditions under which such a major amphibious operation would be necessary are relatively rare. Experience indicates that opposed amphibious assaults are extremely dangerous, so military planners strongly prefer to conduct them only when no better options exist. Other than landing Marine
The number of personnel shown here for the various ships reflects the Navy’s official crew size (number of billets) for each type of ship rather than (as in the entries for those ships) the average number of personnel that would be required to man such a ship for one year.
Corps forces, ARGs are capable of offering only minor air support in a conflict. ARGs carry far fewer aircraft than an aircraft carrier does, and their aircraft have much shorter ranges and smaller payloads. (Moreover, as noted above, even carrier-based aircraft tend to play a more limited role in major conflicts than land-based aircraft do.)

Past and Planned Use. The United States has frequently used amphibious ships to deploy Marine Corps forces for small-scale operations, and it seems likely to continue to do so in the future. The United States has also deployed amphibious ships for major combat operations, but it has not conducted any large-scale amphibious assaults since the 1950 Inchon landings during the Korean War. Amphibious ships played a fairly minor role in the 1991 and 2003 wars with Iraq. However, during operations against the Taliban in 2002, a small Marine Corps force assaulted Kandahar, Afghanistan, from an amphibious ready group more than 400 miles away in the Indian Ocean. That assault showed the ability of modern amphibious forces to deploy entirely by air over a long range. (For a discussion of those and other past military operations, see Appendix C.)

For some time, the Navy and Marine Corps have maintained a goal of having enough amphibious ships to deploy the assault echelons of two Marine expeditionary brigades (MEBs) in an amphibious assault. That goal is somewhat nebulous because MEBs are not standardized units, but transporting two of them would probably require about 15 amphibious ships. Ensuring that 15 amphibious ships were at sea when needed would in turn require 30 amphibious ships to be operationally available at a given time, out of the Navy’s stated inventory goal of 34 ships.

The main challenge of such an amphibious assault would be to assemble enough ships at sea at the same time and place—a challenge that would depend primarily on the Navy’s ability to rotate and schedule ships efficiently. (Deploying all of the Navy’s ships simultaneously is impossible because, at any one time, much of the fleet is at its home port undergoing maintenance, being used for training, or in transit to or from its area of operations.) The Navy and Marine Corps would prefer to have a total fleet of 38 amphibious ships. However, that goal appears unlikely to be met at any time in the foreseeable future because the Navy’s acquisition plans do not envision constructing that many amphibious ships.

The Marine Corps has not conducted a MEB-size amphibious assault in many decades, and few of DoD’s planning scenarios combine all of the factors necessary to make a MEB-size or larger amphibious assault a desirable option. That subject is discussed in more detail later in this chapter, in the special-topic entry on forcible-entry operations.

Like other surface ships, amphibious ships are used extensively during peacetime for routine patrols to provide forward presence. Their notional operating cycle—one 7-month deployment every 36 months—means that with the current fleet of 33 amphibious ships (4 of which are based in Japan), the Navy can have the equivalent of 8 amphibious ships providing overseas presence year-round and a 9th ship for about 4 months of the year. Acquiring more amphibious ships, lengthening deployments, or basing more amphibious ships overseas would increase the fleet’s capacity to provide forward presence, whereas having fewer ships, shortening deployments, or withdrawing ships based in Japan would decrease that capacity. In recent years, high demand for operating amphibious ships overseas has led the Navy to extend deployments for most amphibious ships well beyond the 7 months of their official operating cycle (which is itself an increase from 6 months a decade ago).

25. In 1991, Marine Corps forces onboard amphibious ships were credited with playing a diversionary role, possibly forcing the Iraqi military to defend the coastline with forces that would otherwise have been committed to defending Kuwait’s land borders.

Major Element of the Force Structure

Marine Corps Infantry Battalions

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active-Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Personnel</td>
<td>5,780</td>
<td>1,490</td>
<td>1,990</td>
<td>2,300</td>
</tr>
<tr>
<td>per Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Cost</td>
<td>740</td>
<td>140</td>
<td>140</td>
<td>470</td>
</tr>
<tr>
<td>(Millions of 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve-Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Personnel</td>
<td>4,370</td>
<td>2,070</td>
<td>560</td>
<td>1,740</td>
</tr>
<tr>
<td>per Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Cost</td>
<td>470</td>
<td>70</td>
<td>50</td>
<td>350</td>
</tr>
<tr>
<td>(Millions of 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Aircraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complement</td>
<td>2,750</td>
<td>760</td>
<td>890</td>
<td>1,090</td>
</tr>
<tr>
<td>Military Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>per Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Cost</td>
<td>520</td>
<td>160</td>
<td>140</td>
<td>220</td>
</tr>
<tr>
<td>(Millions of 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Direct” personnel and costs are associated with a major combat unit, “indirect” personnel and costs are associated with units that support the major combat unit, and “overhead” personnel and costs are associated with the major combat unit’s share of administrative or overhead activities. For more information, see Chapter 1. The numbers shown here are rounded to the nearest 10 personnel or $10 million; more detailed information is presented in Appendixes A and B.

The Marine Corps’ infantry battalions, unlike the Army’s brigade combat teams (BCTs), are “pure” light-infantry organizations that are not intended to operate independently. Instead, they are assembled into task forces—tailored to the needs of a specific operation—with other ground combat forces, air-support and logistics units, and a headquarters element for the whole task force. A Marine expeditionary unit (MEU) is a task force based on an infantry battalion (see Figure 3-2 on page 62), and a Marine expeditionary brigade (MEB) is a task force based on a regiment (typically with three battalions). The largest organization in the Marine Corps is based on an infantry division (which usually consists of three regiments) and is referred to as a Marine expeditionary force (MEF).

The Marine Corps maintains three MEFs as standing peacetime organizations, but it assembles MEUs and MEBs only as needed for actual operations. When I Marine Expeditionary Force deployed to Kuwait in 1991 and to Iraq in 2003, it did not include exactly the same set of units that it normally includes when stationed at Camp Pendleton in California.

Although Marine task forces other than MEFs are not standardized units, the Congressional Budget Office’s modeling approach of allocating support units to major combat units produces an estimated size and cost for a Marine infantry battalion that approximates an “average” for Marine Corps ground combat and air combat forces and their associated support units. Under that approach, if a notional Marine Corps task force consisted of three battalions (three MEUs or a single MEB), it would have three times the number of personnel, and three times the cost, of the average battalion-size force discussed here. In CBO’s analysis, a fully supported Marine infantry battalion is assigned a proportional share of the following:

- Each Marine division’s assets, which include field artillery regiments, tank battalions, light armored vehicle battalions, and amphibious assault battalions;

27. The Marine Corps maintains several headquarters for the smaller organizations, but those headquarters do not have units attached to them when they are not taking part in operations.

28. In practice, smaller Marine Corps task forces tend to be assembled for less demanding tasks and include fewer support personnel.
Each Marine aircraft wing’s squadrons of aircraft, which consist of utility helicopters, attack helicopters, heavy-lift helicopters, tilt-rotor aircraft, and short-takeoff, vertical-landing attack aircraft; and

Each Marine logistics group’s assets, which provide logistical support to Marine Corps forces.

Although Marine Corps doctrine treats ground and air assets as inseparable parts of task forces, CBO separated the aircraft and air crew of each infantry battalion’s support units into a separate category (referred to here as an aircraft complement) to more clearly display their costs. However, for reasons discussed below in the special-topic entries on Navy and Marine Corps integration (page 70) and naval shipborne aviation (page 74), CBO did not include the Marine Corps’ F/A-18 fixed-wing aircraft in the aircraft complements. Similarly, not all of the personnel that CBO displays as associated with Marine units are marines—some are Navy personnel assigned to Marine Corps units.

Current and Planned Structure. The Marine Corps intends to field 24 infantry battalions in the active component and 8 infantry battalions in the Marine Corps Reserve in 2017, with no plans to change either number through 2021. Those battalions and their aircraft complements account for virtually all of the Marine Corps’ operation and support funding but about one-third of the Department of the Navy’s operation and support funding.

Purpose and Limitations. A fully supported MEU, MEB, or MEF is roughly the same size as an equivalent Army ground combat formation but has a different mix of combat and support units. At the highest level, the differences are mostly attributable to the Marine Corps’ integration of fixed-wing aircraft into its forces. The Army does not have its own fixed-wing attack aircraft and relies more heavily on its field artillery units for fire support, whereas the Marine Corps maintains a large complement of fixed-wing attack aircraft but only a modest amount of field artillery. Another difference is that Marine Corps units generally include more direct combat units—with a relatively large amount of infantry in each battalion and a variety of armored vehicles, such as tanks and personnel carriers—as well as robust support from rotary-wing aircraft. At the same time, Marine Corps units have a more limited variety of supporting units, such as air-defense capability, and a more limited logistics structure (in part because the Army is responsible for theater-level logistics functions).

Such structural differences may not be as operationally significant as they appear, however, because U.S. forces always operate as joint (multiservice) forces. Army BCTs, for example, receive substantial air support from the Air Force’s fixed-wing aircraft, and they are not necessarily deficient compared with Marine Corps regiments merely because that fixed-wing air support is not part of a BCT. The main limitation of Marine Corps battalions is that, being primarily a light-infantry force with a limited armored component, they are not well suited for combat against heavily armored opponents in unfavorable terrain. However, that limitation may be less significant in practice than it is for the Army’s infantry BCTs, because Marine Corps forces have access to some armored vehicles (each Marine division includes a tank battalion, for example) and also have access to a wider array of air-support assets (in the form of Marine Corps fixed-wing aircraft) that are organic to (included in) the force.

One criticism sometimes leveled at Marine Corps battalions is that when they are not performing amphibious assault missions, they essentially form a second Army, which is duplicative and wasteful for the United States. The U.S. military’s practice of maintaining two separate armed services to provide ground combat forces is unusual compared with what most other nations do. However, the Marine Corps has a long record of combat on land in operations unconnected to its amphibious assault mission, and DoD often employs Marine Corps ground forces as if they are essentially interchangeable with Army ground forces. Moreover, Marine Corps and Army units routinely operate together as part of joint forces. In theory, the United States might gain some benefits from consolidating ground combat forces in a single military service. But in practice, it is difficult to identify any substantial inefficiencies at the Department of Defense that result from maintaining large Marine Corps ground combat units.

29. In CBO’s analysis of the Marine Corps’ forces, the direct costs and personnel of an infantry battalion or aircraft complement represent those of the ground combat or air combat elements, whereas the indirect costs and personnel represent those of the command and logistics elements.
Some observers argue that the two ground services have a complementary relationship rather than a duplicative one. In that view, the Marine Corps’ strengths in being able to deploy forces from the sea and in integrating fixed-wing aircraft with ground units complement the Army’s strengths in conducting large-scale combat operations (involving infantry, armored units, and other types of forces) and in coordinating combat logistics.

Past and Planned Use. Marine Corps ground forces have taken part in all of the United States’ major combat operations in recent history—including Operation Desert Storm (to remove Iraqi forces from Kuwait in 1991), Operation Iraqi Freedom (the invasion of Iraq in 2003), and Operation Enduring Freedom (the invasion of Afghanistan in 2001)—as well as in numerous smaller operations. In Operations Desert Storm and Iraqi Freedom, DoD successfully used Marine Corps forces against an Iraqi army that had large numbers of armored vehicles in desert terrain (which is generally considered highly advantageous to armored forces). In addition, Marine Corps ground forces were heavily involved in subsequent counterinsurgency operations in Iraq and Afghanistan. (For a discussion of those and other past military operations, see Appendix C.)

In the 1990s, DoD’s post–Cold War planning focused on being able to fight two major wars simultaneously (or nearly simultaneously). Each war was generally assumed to require four Marine regiments (of three battalions each). Subsequent planning has not been as rigid but envisions needing similar numbers of Marine Corps units for major conflicts, which means that the eight regiments in the Marine Corps’ active component and three in the Marine Corps Reserve would be enough for two major conflicts. However, if the future security environment is dominated by scenarios that place more emphasis on naval and air forces—such as potential operations around Taiwan, the South China Sea, or the Strait of Hormuz—the need for ground forces may decline (see Appendix C).

In principle, the need for Marine Corps infantry battalions is affected by the number of three-ship amphibious ready groups (ARGs) that the Navy maintains. However, the Marine Corps is significantly larger than necessary to satisfy the demand for MEUs on ARGs. With 2 or 3 ARGs typically at sea at any time (each with a MEU), the Marine Corps would have to use only 6 to 9 of its 24 active-component infantry battalions to meet that need (given the common ratio of 2 nondeployed units needed to sustain 1 deployed unit). Very large reductions in the size of the Marine Corps, without a similar reduction in the size of the amphibious force, might imperil the Marine Corps’ ability to provide MEUs for ARGs, but small or moderate changes to the size of the Marine Corps would not—assuming that the Marine Corps was not under heavy pressure from other commitments. At times when the service has had other major commitments, such as providing ground forces during the occupation of Iraq, keeping a large enough pool of forces to provide MEUs for ARGs was demanding, requiring DoD to set priorities for its limited number of assets.

30. In Operation Desert Storm, Army heavy forces were primarily responsible for attacking and destroying Iraqi Republican Guard divisions (Iraq’s most capable armored units), while Marine Corps ground forces were responsible for liberating Kuwait. In Operation Iraqi Freedom, when Iraqi forces were less well equipped and capable, Army and Marine Corps ground forces each had their own attack paths.